\documentclass[12pt,a4paper]{article}
\usepackage{amsmath}\usepackage{amssymb}
\textwidth=16.5cm \oddsidemargin=-0.10cm \evensidemargin=-0.10cm \topmargin=-1.0cm \textheight=24.5cm
\newcommand{\piRsquare}{\pi r^2}
\title{The small amplitude expansion: The class of theoritical considered}
\author{Md. X }
\date{January 26, 2013}
\begin{document} \baselineskip=18pt
\section{Introduction}
\begin{align}
\left(\nabla p_1\right){}^2 g_2-\frac{1}{3} \text{Cos}[2 \tau ] \left(\nabla p_1\right){}^2 g_2-\frac{1}{24} \lambda \text{Cos}[2 \tau ] g_2 p_1^4-\frac{1}{24} \lambda \text{Cos}[4 \tau ] g_2 p_1^4+\frac{19}{72} g_2^3 p_1^4-\frac{1}{9} \text{Cos}[2 \tau ] g_2^3 p_1^4+\frac{5}{72} \text{Cos}[4 \tau ] g_2^3 p_1^4 \\
& \qquad -\frac{5}{8} g_2 g_3 p_1^4-\frac{1}{2} \text{Cos}[2 \tau ] g_2 g_3 p_1^4+\frac{1}{8} \text{Cos}[4 \tau ] g_2 g_3 p_1^4+\frac{3}{8} g_4 p_1^4+\frac{1}{2} \text{Cos}[2 \tau ] g_4 p_1^4+\frac{1}{8} \text{Cos}[4 \tau ] g_4 p_1^4-\frac{5}{2} \text{Cos}[\tau ] g_2^2 p_1^2 p_2+\frac{1}{2} \text{Cos}[3 \tau ] g_2^2 p_1^2 p_2 \\
& \qquad +\frac{9}{4} \text{Cos}[\tau ] g_3 p_1^2 p_2+\frac{3}{4} \text{Cos}[3 \tau ] g_3 p_1^2 p_2+\frac{1}{2} g_2 p_2^2+\frac{1}{2} \text{Cos}[2 \tau ] g_2 p_2^2+g_2 p_1 p_3+\text{Cos}[2 \tau ] g_2 p_1 p_3-\frac{5}{6} \text{Sin}[\tau ] g_2^2 p_1^2 q_2+\frac{1}{2} \text{Sin}[3 \tau ] g_2^2 p_1^2 q_2 \\
& \qquad +\frac{3}{4} \text{Sin}[\tau ] g_3 p_1^2 q_2+\frac{3}{4} \text{Sin}[3 \tau ] g_3 p_1^2 q_2+\text{Sin}[2 \tau ] g_2 p_2 q_2+\frac{1}{2} g_2 q_2^2-\frac{1}{2} \text{Cos}[2 \tau ] g_2 q_2^2+\text{Sin}[2 \tau ] g_2 p_1 q_3+g_2 p_1 \text{$\Delta $p}_1\\
& \qquad -\frac{1}{3} \text{Cos}[2 \tau ] g_2 p_1 \text{$\Delta $p}_1-\text{Cos}[\tau ] \text{$\Delta $p}_2-\text{Sin}[\tau ] \text{$\Delta $q}_2-\frac{2}{3} \text{Cos}[2 \tau ] g_2 p_1^2 \omega _2-\text{Cos}[\tau ] p_2 \omega _2-\text{Sin}[\tau ] q_2 \omega _2-\text{Cos}[\tau ] p_1 \omega _3+\phi _4[\tau ]+\phi _4''[\tau ] =0
\end{align}
\end{document}
我尝试拆分方程,但失败了。我可以拆分其他方程,但这不适用于多个方程。我使用过 & \qquad,但不起作用。有人能帮助我吗?
答案1
&
对于较长的机械生成的术语,尝试插入和对齐结构是否有意义尚不清楚\\
。要真正获得人类可读的输出,您需要将其完全分解,为子术语命名等,另一种方法是让整个过程顺其自然:
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{flushleft}\linespread{2}\selectfont
$\displaystyle
(\nabla p_1){}^2 g_2-\frac{1}{3} \text{Cos}[2 \tau ] \left(\nabla p_1\right){}^2 g_2-\frac{1}{24} \lambda \text{Cos}[2 \tau ] g_2 p_1^4-\frac{1}{24} \lambda \text{Cos}[4 \tau ] g_2 p_1^4+\frac{19}{72} g_2^3 p_1^4-\frac{1}{9} \text{Cos}[2 \tau ] g_2^3 p_1^4+\frac{5}{72} \text{Cos}[4 \tau ] g_2^3 p_1^4
-\frac{5}{8} g_2 g_3 p_1^4-\frac{1}{2} \text{Cos}[2 \tau ] g_2 g_3 p_1^4+\frac{1}{8} \text{Cos}[4 \tau ] g_2 g_3 p_1^4+\frac{3}{8} g_4 p_1^4+\frac{1}{2} \text{Cos}[2 \tau ] g_4 p_1^4+\frac{1}{8} \text{Cos}[4 \tau ] g_4 p_1^4-\frac{5}{2} \text{Cos}[\tau ] g_2^2 p_1^2 p_2+\frac{1}{2} \text{Cos}[3 \tau ] g_2^2 p_1^2 p_2
+\frac{9}{4} \text{Cos}[\tau ] g_3 p_1^2 p_2+\frac{3}{4} \text{Cos}[3 \tau ] g_3 p_1^2 p_2+\frac{1}{2} g_2 p_2^2+\frac{1}{2} \text{Cos}[2 \tau ] g_2 p_2^2+g_2 p_1 p_3+\text{Cos}[2 \tau ] g_2 p_1 p_3-\frac{5}{6} \text{Sin}[\tau ] g_2^2 p_1^2 q_2+\frac{1}{2} \text{Sin}[3 \tau ] g_2^2 p_1^2 q_2
+\frac{3}{4} \text{Sin}[\tau ] g_3 p_1^2 q_2+\frac{3}{4} \text{Sin}[3 \tau ] g_3 p_1^2 q_2+\text{Sin}[2 \tau ] g_2 p_2 q_2+\frac{1}{2} g_2 q_2^2-\frac{1}{2} \text{Cos}[2 \tau ] g_2 q_2^2+\text{Sin}[2 \tau ] g_2 p_1 q_3+g_2 p_1 \text{$\Delta $p}_1
-\frac{1}{3} \text{Cos}[2 \tau ] g_2 p_1 \text{$\Delta $p}_1-\text{Cos}[\tau ] \text{$\Delta $p}_2-\text{Sin}[\tau ] \text{$\Delta $q}_2-\frac{2}{3} \text{Cos}[2 \tau ] g_2 p_1^2 \omega _2-\text{Cos}[\tau ] p_2 \omega _2-\text{Sin}[\tau ] q_2 \omega _2-\text{Cos}[\tau ] p_1 \omega _3+\phi _4[\tau ]+\phi _4''[\tau ] =0
\hfill\qquad\refstepcounter{equation}(\theequation)
$
\end{flushleft}
\end{document}
答案2
这个等式中有一些非常长的行。您需要&
在第一行前面进行对齐,这样您才能看到以下行:
\documentclass{article}
\usepackage[margin=1in,landscape]{geometry}
\usepackage{amsmath,amssymb}
\pagestyle{empty}
\begin{document}
\begin{align}
\left(\nabla p_1\right){}^2 & g_2-\frac{1}{3} \text{Cos}[2 \tau ] \left(\nabla p_1\right){}^2 g_2-\frac{1}{24} \lambda \text{Cos}[2 \tau ] g_2 p_1^4-\frac{1}{24} \lambda \text{Cos}[4 \tau ] g_2 p_1^4+\frac{19}{72} g_2^3 p_1^4-\frac{1}{9} \text{Cos}[2 \tau ] g_2^3 p_1^4+\frac{5}{72} \text{Cos}[4 \tau ] g_2^3 p_1^4 \\
& \qquad -\frac{5}{8} g_2 g_3 p_1^4-\frac{1}{2} \text{Cos}[2 \tau ] g_2 g_3 p_1^4+\frac{1}{8} \text{Cos}[4 \tau ] g_2 g_3 p_1^4+\frac{3}{8} g_4 p_1^4+\frac{1}{2} \text{Cos}[2 \tau ] g_4 p_1^4+\frac{1}{8} \text{Cos}[4 \tau ] g_4 p_1^4-\frac{5}{2} \text{Cos}[\tau ] g_2^2 p_1^2 p_2+\frac{1}{2} \text{Cos}[3 \tau ] g_2^2 p_1^2 p_2 \\
& \qquad +\frac{9}{4} \text{Cos}[\tau ] g_3 p_1^2 p_2+\frac{3}{4} \text{Cos}[3 \tau ] g_3 p_1^2 p_2+\frac{1}{2} g_2 p_2^2+\frac{1}{2} \text{Cos}[2 \tau ] g_2 p_2^2+g_2 p_1 p_3+\text{Cos}[2 \tau ] g_2 p_1 p_3-\frac{5}{6} \text{Sin}[\tau ] g_2^2 p_1^2 q_2+\frac{1}{2} \text{Sin}[3 \tau ] g_2^2 p_1^2 q_2 \\
& \qquad +\frac{3}{4} \text{Sin}[\tau ] g_3 p_1^2 q_2+\frac{3}{4} \text{Sin}[3 \tau ] g_3 p_1^2 q_2+\text{Sin}[2 \tau ] g_2 p_2 q_2+\frac{1}{2} g_2 q_2^2-\frac{1}{2} \text{Cos}[2 \tau ] g_2 q_2^2+\text{Sin}[2 \tau ] g_2 p_1 q_3+g_2 p_1 \text{$\Delta $p}_1\\
& \qquad -\frac{1}{3} \text{Cos}[2 \tau ] g_2 p_1 \text{$\Delta $p}_1-\text{Cos}[\tau ] \text{$\Delta $p}_2-\text{Sin}[\tau ] \text{$\Delta $q}_2-\frac{2}{3} \text{Cos}[2 \tau ] g_2 p_1^2 \omega _2-\text{Cos}[\tau ] p_2 \omega _2-\text{Sin}[\tau ] q_2 \omega _2-\text{Cos}[\tau ] p_1 \omega _3+\phi _4[\tau ]+\phi _4''[\tau ] =0
\end{align}
\end{document}
此外,我建议将\text{Cos}
和分别更改\text{Sin}
为\cos
和\sin
。
最后,这是一个非常长且难以理解的公式。作为读者,我会发现它很难解析。
答案3
Mathematica 的自动输出不能直接插入,需要一些手动工作。
例如,你会发现无用的\left
和\right
,还有无用的{}
和错误的 \text{$\Delta$p}_2$
。
我将长等式在加号和减号处分开,并用\begin{multline}
和将其包围\end{multline}
;然后我\\
在可能合适的位置插入以免线条过长。
此外,我\text{Cos}
还\text{Sin}
使用适当的命令进行了更改。
\documentclass{article}
\usepackage[pass,showframe]{geometry} % just for the example (it shows the margins)
\usepackage{amsmath,amssymb}
\DeclareMathOperator\Cos{Cos}
\DeclareMathOperator\Sin{Sin}
\begin{document}
\begin{multline}
(\nabla p_1)^2 g_2
-\frac{1}{3} \Cos[2\tau] (\nabla p_1)^2 g_2
-\frac{1}{24} \lambda \Cos[2\tau] g_2 p_1^4
-\frac{1}{24} \lambda \Cos[4\tau] g_2 p_1^4
\\
+\frac{19}{72} g_2^3 p_1^4
-\frac{1}{9} \Cos[2\tau] g_2^3 p_1^4
+\frac{5}{72} \Cos[4 \tau ] g_2^3 p_1^4
-\frac{5}{8} g_2 g_3 p_1^4
\\
-\frac{1}{2} \Cos[2\tau] g_2 g_3 p_1^4
+\frac{1}{8} \Cos[4\tau] g_2 g_3 p_1^4
+\frac{3}{8} g_4 p_1^4
+\frac{1}{2} \Cos[2\tau] g_4 p_1^4
\\
+\frac{1}{8} \Cos[4\tau] g_4 p_1^4
-\frac{5}{2} \Cos[\tau] g_2^2 p_1^2 p_2
+\frac{1}{2} \Cos[3 \tau ] g_2^2 p_1^2 p_2
+\frac{9}{4} \Cos[\tau] g_3 p_1^2 p_2
\\
+\frac{3}{4} \Cos[3\tau] g_3 p_1^2 p_2
+\frac{1}{2} g_2 p_2^2
+\frac{1}{2} \Cos[2\tau] g_2 p_2^2
+g_2 p_1 p_3
\\
+\Cos[2 \tau ] g_2 p_1 p_3
-\frac{5}{6} \Sin[\tau] g_2^2 p_1^2 q_2
+\frac{1}{2} \Sin[3\tau] g_2^2 p_1^2 q_2
+\frac{3}{4} \Sin[\tau] g_3 p_1^2 q_2
\\
+\frac{3}{4} \Sin[3\tau] g_3 p_1^2 q_2
+\Sin[2 \tau ] g_2 p_2 q_2
+\frac{1}{2} g_2 q_2^2
-\frac{1}{2} \Cos[2\tau] g_2 q_2^2
\\
+\Sin[2\tau] g_2 p_1 q_3
+g_2 p_1 \Delta p_1
-\frac{1}{3} \Cos[2\tau] g_2 p_1 \Delta p_1
-\Cos[\tau ] \Delta p_2
\\
-\Sin[\tau ] \Delta q_2
-\frac{2}{3} \Cos[2\tau] g_2 p_1^2 \omega _2
-\Cos[\tau ] p_2 \omega _2
-\Sin[\tau ] q_2 \omega _2
\\
-\Cos[\tau ] p_1 \omega _3
+\phi _4[\tau ]
+\phi _4''[\tau ] =0
\end{multline}
\end{document}