如何在 beamer 中使用 pstricks 包?我知道在 beamer 中使用 pstricks 的纯英文排版方法,但 xelatex pstricks beamer 失败了

如何在 beamer 中使用 pstricks 包?我知道在 beamer 中使用 pstricks 的纯英文排版方法,但 xelatex pstricks beamer 失败了

为了显示简单的图形,我开始学习pstricks包。我把一段示例代码复制到一个beamer文件中。当我编译它时,出错了。我该如何修复它?进程latex->dvips->ps2pdf不起作用,也不行xelatex,谁能帮我?

以下是代码:

\documentclass{beamer}
\usepackage{xeCJK}
\usepackage{tikz}
\usepackage{pstricks}
\setCJKmainfont{SimSun}
\setbeamertemplate{items}[square]
%\setbeamerfont{title}{WenQuanYi Zen Hei Mono}
%\setbeamercolor{title}{green}

\usetheme{CambridgeUS}
\setbeamertemplate{navigation symbols}{}
\begin{document}

\title{moumou专题}
\author{author}
\institute{[email protected]}
\date{2013-07-22}

\begin{frame}
\titlepage
\end{frame}

\begin{frame}[t]
%\tiny
\scriptsize
在平面直角坐标系$xoy$中,点B与点$\text{A}(-1,1)$关于原点O对称,P是动点,且直线AP与BP的斜率之积等于$-\dfrac{1}{3}$.\\
%\begin{enumerate}
%    \item 求动点P的轨迹方程;
%    \item 设直线AP和BP分别与直线$x=3$交于点M,N,问:是否存在点P使得$\bigtriangleup\text{PAB}$与$\bigtriangleup\text{PMN}$的面积相等?若存在,求出点P的坐标;若不存在,说明理由.
(I)求动点P的轨迹方程;\\
(II)设直线AP和BP分别与直线$x=3$交于点M,N,问:是否存在点P使得$\bigtriangleup\text{PAB}$与$\bigtriangleup\text{PMN}$的面积相等?若存在,求出点P的坐标;若不存在,说明理由.
%\end{enumerate}


\begin{tikzpicture}
\draw (0,0) -- (0,2) -- (2,0)-- (0,0);
\end{tikzpicture}
\end{frame}

\begin{frame}[t]
\begin{tikzpicture}
\draw (0,0) -- (0,2) -- (2,0)-- (0,0);
\end{tikzpicture}
\end{frame}

\begin{frame}[t]
\begin{tikzpicture}[domain=0:2]
\draw[thick,color=gray,step=.5cm,
dashed] (-0.5,-.5) grid (3,3);
\draw[->] (-1,0) -- (3.5,0)
node[below right] {$x$};
\draw[->] (0,-1) -- (0,3.5)
node[left] {$y$};
\draw plot[id=x] function{x*x};
\end{tikzpicture}

\end{frame}

\begin{frame}
\begin{pspicture}(0,0)(5,2)
\psline[linecolor=blue](1,1)(2,2)(3,1)(4,2)(5,1)
\psline[linearc=0.5,linecolor=red](1,1)(2,2)(3,1)(4,2)(5,1)
\end{pspicture}
\end{fram}


\end{document}

以下是编译信息截图: 汇编信息

答案1

  • 不要对数据文件使用两个扩展名。使用类似 ps-beamer-x.table
  • 用作[t,fragile]框架的可选参数enumerate

我使用‘xelatex’的输出:

在此处输入图片描述

\documentclass{beamer}
\usepackage{xeCJK}
\usepackage{tikz}
\usepackage{pstricks}
\setCJKmainfont{SimSun}
\setbeamertemplate{items}[square]
%\setbeamerfont{title}{WenQuanYi Zen Hei Mono}
%\setbeamercolor{title}{green}

\usetheme{CambridgeUS}
\setbeamertemplate{navigation symbols}{}
\begin{document}

\title{moumou专题}
\author{author}
\institute{[email protected]}
\date{2013-07-22}

\begin{frame}
\titlepage
\end{frame}

\begin{frame}[t,fragile]
%\tiny
\scriptsize
在平面直角坐标系$xoy$中,点B与点$\text{A}(-1,1)$关于原点O对称,P是动点,且直线AP与BP的斜率之积等于$-\dfrac{1}{3}$.\\
\begin{enumerate}
    \item 求动点P的轨迹方程;
    \item 设直线AP和BP分别与直线$x=3$交于点M,N,问:是否存在点P使得$\bigtriangleup\text{PAB}$与$\bigtriangleup\text{PMN}$的面积相等?若存在,求出点P的坐标;若不存在,说明理由.
(I)求动点P的轨迹方程;\\
(II)设直线AP和BP分别与直线$x=3$交于点M,N,问:是否存在点P使得$\bigtriangleup\text{PAB}$与$\bigtriangleup\text{PMN}$的面积相等?若存在,求出点P的坐标;若不存在,说明理由.
\end{enumerate}


\begin{tikzpicture}
\draw (0,0) -- (0,2) -- (2,0)-- (0,0);
\end{tikzpicture}
\end{frame}

\begin{frame}
\begin{tikzpicture}
\draw (0,0) -- (0,2) -- (2,0)-- (0,0);
\end{tikzpicture}
\end{frame}

\begin{frame}
\begin{tikzpicture}[domain=0:2]
\draw[thick,color=gray,step=.5cm,
dashed] (-0.5,-.5) grid (3,3);
\draw[->] (-1,0) -- (3.5,0)
node[below right] {$x$};
\draw[->] (0,-1) -- (0,3.5)
node[left] {$y$};
\draw plot[id=x] function{x*x};
\end{tikzpicture}

\end{frame}

\begin{frame}
\begin{pspicture}(0,0)(5,2)
\psline[linecolor=blue](1,1)(2,2)(3,1)(4,2)(5,1)
\psline[linearc=0.5,linecolor=red](1,1)(2,2)(3,1)(4,2)(5,1)
\end{pspicture}
\end{frame}

\end{document}

相关内容