改变定理环境的文本大小

改变定理环境的文本大小

我的 MWE:

\documentclass{beamer}
\usepackage[english]{babel}
\usepackage{calc}
\usepackage[absolute,overlay]{textpos}
\usepackage{pdfsync}
\mode<presentation>
\usetheme{Antibes}

% Define the title of each inserted pre-subsection frame
\newcommand*\titleSubsec{Next Subsection}
% Define the title of the "Table of Contents" frame
\newcommand*\titleTOC{Outline}

\begin{document}

\section{Section 1}

\begin{frame}\frametitle{Lyapunov Theory}

\begin{theorem}[LaSalle-Yoshizawa]
\tiny
Let $\boldsymbol{x}_e$ be an equilibrium point of:
\begin{equation} \label{eq:LaSalle}
\dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x},t) \,.
\end{equation}

Let $\mathcal{V}$ be a continuously differentiable function $\mathcal{V}(\boldsymbol{x})$ satisfying:
\begin{enumerate}
\item $\mathcal{V}(\boldsymbol{x}) > 0$ and $\mathcal{V}(\boldsymbol{0}) = 0 \,;$
\item $\mathcal{V}(\boldsymbol{x}) \to \infty$ as $|\boldsymbol{x}| \to \infty \,;$
\item $\dot{\mathcal{V}} =  \frac{\partial \mathcal{V}}{\partial \boldsymbol{x}}\boldsymbol{f}(\boldsymbol{x},t) \leq - W(\boldsymbol{x}) \leq 0 \,,$
\end{enumerate}

where $W(\boldsymbol{x})$ is a continuous function. Then:
\begin{equation}
\lim_{t \to \infty} W(\boldsymbol{x}(t)) = 0 \,.
\end{equation}

In addition, if $W(\boldsymbol{x}) > 0$, then the equilibrium point $\boldsymbol{x}_e$ of system~(\ref{eq:LaSalle}) is globally uniformly asymptotically stable. \vspace{-0.5cm} 
\end{theorem} 


\end{frame}

\end{document}

结果:

在此处输入图片描述

可以看出,块大小不足以容纳所有文本。现在,我如何才能缩小此特定块内的标准文本大小(就像我已经使用 \tiny 所做的那样),同时将所有文本放入块内?

答案1

\vspace{<len>}您最后一行的问题theorem是问题的原因。

段落In addition, ...设置为水平模式。在此模式下,它会遇到\vspace{<len>}。然后,它会被存储,直到 TeX 切换到垂直模式,然后才会真正使用。在 时达到垂直模式\end{theorem},此时theorem框的垂直高度实际上会减少<len>

显而易见的解决方案是删除\vspace{<len>}插入。


我建议采用不同的布局,因为演示文稿中的交叉引用实际上很难理解。由于没有引用 (2),请将公式写在行内,这样可以提供更多的垂直空间以适应幻灯片。此外,您可能希望减少前后垂直跳跃equation跳跃只是对于此幻灯片:

在此处输入图片描述

\documentclass{beamer}
\let\Tiny\tiny% http://tex.stackexchange.com/a/94159/5764
\usetheme{Antibes}

\begin{document}

\section{Section 1}

\begin{frame}
  \frametitle{Lyapunov Theory}

  \begin{theorem}[LaSalle-Yoshizawa]
    \footnotesize
    Let $\boldsymbol{x}_e$ be an equilibrium point of:
    \begin{equation}
      \label{eq:LaSalleA}
      \dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x},t) \,.
    \end{equation}

    Let $\mathcal{V}$ be a continuously differentiable function $\mathcal{V}(\boldsymbol{x})$ satisfying:
    \begin{enumerate}
      \item $\mathcal{V}(\boldsymbol{x}) > 0$ and $\mathcal{V}(\boldsymbol{0}) = 0 \,;$
      \item $\mathcal{V}(\boldsymbol{x}) \to \infty$ as $|\boldsymbol{x}| \to \infty \,;$
      \item $\dot{\mathcal{V}} =  \frac{\partial \mathcal{V}}{\partial \boldsymbol{x}}\boldsymbol{f}(\boldsymbol{x},t) \leq - W(\boldsymbol{x}) \leq 0 \,,$
    \end{enumerate}

    where $W(\boldsymbol{x})$ is a continuous function. Then:
    \begin{equation}
      \lim_{t \to \infty} W(\boldsymbol{x}(t)) = 0 \,.
    \end{equation}

    In addition, if $W(\boldsymbol{x}) > 0$, then the equilibrium point $\boldsymbol{x}_e$ of system~(\ref{eq:LaSalleA}) 
    is globally uniformly asymptotically stable.
  \end{theorem} 

\end{frame}

\begin{frame}
  \frametitle{Lyapunov Theory}

  \begin{theorem}[LaSalle-Yoshizawa]
    \setlength{\abovedisplayskip}{.5\abovedisplayskip}%
    \setlength{\belowdisplayskip}{.5\belowdisplayskip}%
    Let $\boldsymbol{x}_e$ be an equilibrium point of:
    \begin{equation}
      \label{eq:LaSalleB}
      \dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x},t) \,.
    \end{equation}

    Let $\mathcal{V}$ be a continuously differentiable function $\mathcal{V}(\boldsymbol{x})$ satisfying:
    \begin{enumerate}
      \item $\mathcal{V}(\boldsymbol{x}) > 0$ and $\mathcal{V}(\boldsymbol{0}) = 0 \,;$
      \item $\mathcal{V}(\boldsymbol{x}) \to \infty$ as $|\boldsymbol{x}| \to \infty \,;$
      \item $\dot{\mathcal{V}} =  \frac{\partial \mathcal{V}}{\partial \boldsymbol{x}}\boldsymbol{f}(\boldsymbol{x},t) \leq - W(\boldsymbol{x}) \leq 0 \,,$
    \end{enumerate}

    where $W(\boldsymbol{x})$ is a continuous function. Then $\lim_{t \to \infty} W(\boldsymbol{x}(t)) = 0$.
    In addition, if $W(\boldsymbol{x}) > 0$, then the equilibrium point $\boldsymbol{x}_e$ of system~(\ref{eq:LaSalleB}) 
    is globally uniformly asymptotically stable.
  \end{theorem} 

\end{frame}

\end{document}

第二帧使用\normalsize字体使其与演示文稿的其余部分更好地契合。

相关内容