我只想调整一下这里的表格。代码中的某些内容是将表格放在页面顶部,而不是设计的小节下方。此外,如果可能的话,在行之间添加一些水平和垂直空间。我非常感谢您的帮助。
\documentclass[11pt]{article}
\usepackage[top=1in, bottom=1in,left=1in,right=1in]{geometry}
\usepackage{graphicx}
\usepackage[english]{babel}
\usepackage{circuitikz}
\usepackage{color}
\usepackage{listings} % for codes
\usepackage{amsmath} % for matrices
\usepackage{amssymb}
\usepackage{array}
\usepackage{tikz} % for flowcharts
\usetikzlibrary{shapes.geometric, arrows}
\usepackage{tabu}
\usepackage{siunitx}
\usepackage{caption}
\begin{document}
\subsection{Derivatives and Integrals}
\begin{description}
\item[Derivatives]
\item \hspace{0.5in} Derivatives are used to analyse the rate in which a variable changes its value related with another, if it is fast, slow or non-existent. Some examples are: the body response due to a drug dosage or the cost of a production due to the quantity of any special material used.
\item \hspace{0.5in} The derivative of a function $f(x)$ related to the variable $x$ is the function $f'$ which value in $x$ is defined by:
$$f'(x) = \frac{d}{dx} f(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}$$
\item \hspace{0.5in} One of the most important use of the derivatives is to know in what point $c$ a function reach its maximum and minimum values, which can be found by:
$$f'(c) = 0$$
\item[Useful Derivatives]
\end{description}
\begin{center}
\begin{table}
\begin{tabular}{l l}
$y = u^n \Rightarrow y' = n \ u^{n-1} \ u'$ & $y = u^v \Rightarrow y' = v \ u^{v-1} \ u' + u^v \ (ln \ u) \ v'$ \\
$y = uv \Rightarrow y' = vu'+uv'$ & $y = sin \ u \Rightarrow y' = u' \ cos \ u$ \\
$y = \displaystyle{\frac{u}{v}} \Rightarrow y' = \displaystyle{\frac{vu'-uv'}{v^2}}$ & $y = cos \ u \Rightarrow y' = -u' \ sin \ u$ \\
$y = a^u \Rightarrow y' = a^u \ (ln \ a) \ u'$ & $y = tan \ u \Rightarrow y' = u' \ sec^2u$ \\
$y = log_au \Rightarrow y' = \displaystyle{\frac{u'}{u}} log_a e$ & $y = sec \ u \Rightarrow y' = u' \ sec \ u \ tan \ u$
\end{tabular}
\end{table}
\end{center}
\end{document}
答案1
以下是我对设置您提供的信息的建议:
\documentclass{article}
\usepackage[margin=1in]{geometry}
\usepackage{amsmath,indentfirst}
\setcounter{secnumdepth}{0}
\begin{document}
\section{Derivatives and Integrals}
\subsection{Derivatives}
Derivatives are used to analyse the rate in which a variable changes its value related with another, if it is fast, slow or non-existent. Some examples are: the body response due to a drug dosage or the cost of a production due to the quantity of any special material used.
The derivative of a function~$f(x)$ related to the variable~$x$ is the function~$f'$ which value in~$x$ is defined by:
\[
f'(x) = \frac{d}{dx} f(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}
\]
One of the most important use of the derivatives is to know in what point~$c$ a function reach its maximum and minimum values, which can be found by:
\[
f'(c) = 0
\]
\subsection{Useful Derivatives}
\[
\begin{array}{l @{\quad\Rightarrow\quad} l @{\qquad} l @{\quad\Rightarrow\quad} l}
y = u^n & y' = n u^{n-1} u' & y = u^v & y' = v u^{v-1} u' + u^v (\ln u) v' \\
y = uv & y' = vu' + uv' & y = \sin u & y' = u' \cos u \\
y = \dfrac{u}{v} & y' = \dfrac{vu'-uv'}{v^2} & y = \cos u & y' = -u' \sin u \\
y = a^u & y' = a^u (\ln a) u' & y = \tan u & y' = u' \sec^2u \\
y = \log_a u & y' = \dfrac{u'}{u} \log_a e & y = \sec u & y' = u' \sec u \tan u
\end{array}
\]
\end{document}
请注意,我使用了数学运算符\tan
、\sin
、\cos
、\sec
和 ,\log
并且\ln
没有强制数学变量周围的间距。让 TeX 为您完成这项工作。
另外,不要使用繁琐的条目化,而是description
根据部门单位进行设置。您可以通过设置secnumdepth
( 为 0;只对章节进行编号,而文章中没有章节) 来打开/关闭编号。
最后,无需table
环境即可设置tabular
。相反,由于您希望“数学”水平居中,因此我使用了带有 的tabular
显示数学\[
... 。\]
array
答案2
以下是与示例代码的表格部分相关的建议。我建议创建一个表格,提供一个标题行,并删除所有y =
、y' =
和\Rightarrow
内容,以便读者专注于要点。array
列中的材料自动设置为模式,并通过设置为(默认值:)来\displaystyle
模拟 TeX 显示的方程式的外观。\arraystretch
1.5
1.0
\documentclass{article}
\usepackage{array} % for "\newcolumntype" macro
\newcolumntype{L}{>{\displaystyle}l} % automatic \displaystyle
\begin{document}
\[
\renewcommand\arraystretch{1.5} % simulate spacing of displayed equations
\begin{array}{@{} L @{\quad} L @{\qquad\quad} L @{\quad} L @{}}
$Function$ & $Derivative$ & $Function$ & $Derivative$\\
u^n & n u^{n-1} u' & u^v & v u^{v-1} u' + u^v (\ln u) v' \\
uv & vu' + uv' & \sin u & u' \cos u \\
\frac{u}{v} & \frac{vu'-uv'}{v^2} & \cos u & -u' \sin u \\
a^u & a^u (\ln a) u' & \tan u & u' \sec^2u \\
\log_a u & \frac{u'}{u} \log_a e & \sec u & u' \sec u \tan u \\
\end{array}
\]
\end{document}