我正在为我最后一年的工程项目写一份报告。我有一些很长的方程式需要处理,而且我对 LaTeX 还不太熟悉。
我想要拆分的等式是:
\begin{multline*}
\dot{S_v} = \frac{\mu_{tot}}{T} **\left[** 2\left( \left( \frac{\partial u}{\partial x}\right)^2 + \left( \frac{\partial v}{\partial y}\right)^2 + \left( \frac{\partial w}{\partial z}\right)^2 \right) + 2 \left[\frac{\partial v}{\partial x}\frac{\partial u}{\partial y} +\frac{\partial w}{\partial x}\frac{\partial u}{\partial z} +\frac{\partial w}{\partial y}\frac{\partial v}{\partial z}\right] + \left(\frac{\partial u}{\partial y}\right)^2 + \left(\frac{\partial u}{\partial z}\right)^2 + \left(\frac{\partial v}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial z}\right)^2 + \left(\frac{\partial w}{\partial x}\right)^2 + \left(\frac{\partial w}{\partial y}\right)^2 **\right]**
\end{multline*}
但是当我添加 \\
拆分方程时,\left[ 和 \right] 无法正确运行。有什么想法吗?
这个方程式大致就是我想要的样子。我只需要用两个大方括号括起来。
\begin{multline*}
\dot{S_v} = \frac{\mu_{tot}}{T} 2\left( \left( \frac{\partial u}{\partial x}\right)^2 + \left( \frac{\partial v}{\partial y}\right)^2 + \left( \frac{\partial w}{\partial z}\right)^2 \right) \\ + 2 \left[\frac{\partial v}{\partial x}\frac{\partial u}{\partial y} +\frac{\partial w}{\partial x}\frac{\partial u}{\partial z} +\frac{\partial w}{\partial y}\frac{\partial v}{\partial z}\right] + \\ \left(\frac{\partial u}{\partial y}\right)^2 + \left(\frac{\partial u}{\partial z}\right)^2 + \left(\frac{\partial v}{\partial x}\right)^2 + \\ \left(\frac{\partial v}{\partial z}\right)^2 + \left(\frac{\partial w}{\partial x}\right)^2 + \left(\frac{\partial w}{\partial y}\right)^2
\end{multline*}
谢谢!
答案1
例行咆哮
你需要在第二行\right.
之前\\
和\left.
最前面
\left[......\right. \\
\left. .......\right]
因为\left[
和\right]
如果不平衡就不能跨过线被打破。
常规推荐解决方案
你需要\Biggl[
并且\Biggr]
amsmath
\documentclass{article}
\usepackage{mathtools}
\begin{document}
\begin{multline*}
\dot{S_v} = \frac{\mu_{tot}}{T} \Biggl[ 2\left( \left( \frac{\partial u}{\partial x}\right)^2 + \left( \frac{\partial v}{\partial y}\right)^2 + \left( \frac{\partial w}{\partial z}\right)^2 \right) + 2 \left[\frac{\partial v}{\partial x}\frac{\partial u}{\partial y} +\frac{\partial w}{\partial x}\frac{\partial u}{\partial z} +\frac{\partial w}{\partial y}\frac{\partial v}{\partial z}\right] \\
+ \left(\frac{\partial u}{\partial y}\right)^2 + \left(\frac{\partial u}{\partial z}\right)^2 + \left(\frac{\partial v}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial z}\right)^2 + \left(\frac{\partial w}{\partial x}\right)^2 + \left(\frac{\partial w}{\partial y}\right)^2 \Biggr]
\end{multline*}
\end{document}