跨项目的全局对齐参数

跨项目的全局对齐参数

我读过有关跨多个环境对齐的问题,但仍然不知道如何解决这种情况。

以下代码:

\section*{Solutions to Practice Problems}

\begin{enumerate}
    \item Write down the meaning of the Commutative, Associative and Distributive properties.  Create an example
    that shows how each one works.\\[-2em]
    \begin{align*}
    \intertext{
    \begin{description}[noitemsep, topsep=0pt]
        \item[Commutative Property:] The order in which terms appear can be changed, but the 
            result remains unchanged.
            \begin{example*} \end{example*}
    \end{description}
            }\\[-2em]
            &&& \text{(Addition)}   &   1,000 + x \ &= \ x + 1,000 &&&\\
            &&& \text{(Multiplication)}  &  ab \ &= \ ba &&&
    \intertext{
    \begin{description}[noitemsep, topsep=0pt]
        \item[Associative Property:] The order in which terms are \emph{grouped together} can be changed, 
            but the result remains unchanged.
            \begin{example*} \end{example*}
    \end{description}
            }\\[-2em]
            &&& \text{(Addition)}   &       (1,000 + 500) + y \ &= \ 1,000 + (500 + y) &&& \\
            &&& \text{(Multiplication)} &   a(bc) \ &= \ (ab)c &&&
    \intertext{
    \begin{description}[noitemsep, topsep=0pt]
        \item[Distributive Property:] The product of the sums equals the sum of the products.
            \begin{example*} \end{example*}
    \end{description}
            }\\[-2em]
            &&& \text{(Numbers only)} &     3(40 - 2) \ &= \ 3 \cdot 40 - 3 \cdot 2 &&& \\
            &&& \text{(With variables)} &   5(x - 12) \ &= \ 5x - 60 &&& \\
    \end{align*}
\item Write down the meaning of the Additive and Multiplicative Identity properties.  Create an example that
    shows how each one works.
    \begin{align*}
    \intertext{
    \begin{description}[noitemsep, topsep=0pt]
        \item[Additive Identity:]  There exists a number 0 such that addition with 0 and another term leaves the 
            term unchanged.
            \begin{example*} \end{example*}
    \end{description}
            }\\[-2em]
            &&& \text{(Numbers)}    &   1,000 + 0 \ &= \ 1,000 &&&\\
            &&& \text{(Variables)}      &   x + 0  \ &= \ x &&&
    \intertext{
    \begin{description}[noitemsep, topsep=0pt]
        \item[Multiplicative Identity:] There exists a number 1 such that multiplication with 1 and another term 
            leaves the term unchanged.
            \begin{example*} \end{example*}
    \end{description}
            }\\[-2em]
            &&& \text{(Numbers)}    &   12 \cdot 1 \ &= \ 12 &&& \\
            &&& \text{(Variables)}  &   x \cdot 1 \ &= \ x &&&
    \end{align*}

产生这样的结果:

样本结果

我可以对此进行足够的修改,以使每个项目中的方程式对齐item,但不能跨项目对齐。我所寻找的是统一性,即在每个项目中左对齐(数字)文本,理想情况下在项目间对齐每个方程式的符号=。我发现最接近这个问题的问题是这里。如果可能的话,我只是希望对我这里的内容进行轻微的修改。

如果没有,那么有没有办法在整个文档中设置跨多个对齐环境的“全局”对齐参数?

答案1

为了代码的可读性,您最好使用特殊格式来设置内容array

在此处输入图片描述

\documentclass{article}
\usepackage[margin=1in]{geometry}% Just for this example
\usepackage{amsmath,array,enumitem}
\newlength{\LHS}
\newlength{\RHS}
\newenvironment{bigalign}
  {\[% http://tex.stackexchange.com/q/31672/5764
     %\renewcommand{\arraystretch}{1.5}% Stretch array vertically
     \begin{array}{p{7em}>{\raggedleft$}p{\LHS}<{$}@{}>{${}}p{\RHS}<{$}}}
  {\end{array}\]}
\begin{document}

\begin{enumerate}
  \settowidth{\LHS}{$(1\,000 + 500) + y$}% Longest left-hand side
  \settowidth{\RHS}{${}= 1\,000 + (500 + y)$}% Longest right-hand side
  \item Write down the meaning of the Commutative, Associative and Distributive properties.  Create an example
    that shows how each one works.

    \begin{description}[noitemsep, topsep=0pt]
      \item[Commutative Property:] The order in which terms appear can be changed, but the 
        result remains unchanged.

        \textbf{Example.}
          \begin{bigalign}
            \text{(Addition)}       &         1\,000 + x &= x + 1\,000 \\
            \text{(Multiplication)} &                 ab &= ba
          \end{bigalign}

      \item[Associative Property:] The order in which terms are \emph{grouped together} can be changed, 
        but the result remains unchanged.

        \textbf{Example.}
          \begin{bigalign}
            \text{(Addition)}       & (1\,000 + 500) + y &= 1\,000 + (500 + y) \\
            \text{(Multiplication)} &              a(bc) &= (ab)c
          \end{bigalign}

      \item[Distributive Property:] The product of the sums equals the sum of the products.

        \textbf{Example.}
          \begin{bigalign}
            \text{(Numbers only)}   &          3(40 - 2) &= 3 \cdot 40 - 3 \cdot 2 \\
            \text{(With variables)} &          5(x - 12) &= 5x - 60 \\
          \end{bigalign}

    \end{description}

  \item Write down the meaning of the Additive and Multiplicative Identity properties. Create an example that
    shows how each one works.

    \begin{description}[noitemsep, topsep=0pt]
      \item[Additive Identity:]  There exists a number 0 such that addition with 0 and another term leaves the 
        term unchanged.

        \textbf{Example.}
        \begin{bigalign}
          \text{(Numbers)}        &         1\,000 + 0 &= 1\,000 \\
          \text{(Variables)}      &              x + 0 &= x
        \end{bigalign}

      \item[Multiplicative Identity:] There exists a number 1 such that multiplication with 1 and another term 
        leaves the term unchanged.

        \textbf{Example.}
        \begin{bigalign}
          \text{(Numbers)}        &         12 \cdot 1 &= 12 \\
          \text{(Variables)}      &          x \cdot 1 &= x
        \end{bigalign}

    \end{description}
\end{enumerate}

\end{document}

array(隐藏在 内)对每个组件使用固定宽度的列bigalign。第一列是最左侧的符号。我之所以选择它,7em是因为它在符号和其他内容之间提供了一个很好的间隙。第二列也是固定宽度的列,就像第三列一样,但以对齐(命令\settowidth)中最宽的元素为单位。在左侧,最宽的元素是(1\,000 + 500) + y,而右侧最宽的元素是= 1\,000 + (500 + y)

您可能需要增加\arraystretch以满足您的需求。为了举例,我将其保留为 1。

相关内容