我试图包装以下积分方程,但出现以下错误:
“缺失 } 插入”
代码如下:
\begin{align*}
\phi_{net}=$$\int_{\theta=0}^{\theta=\theta_{max}}\int_{\alpha=\alpha_{min} }^{\alpha=\alpha_{max}} aE_{s}\cos(sin(\alpha_{s})*\\
sin(\alpha)*cos(\theta_{s}-\theta) + cos(\theta_{s}-\theta)\\
+ cos(\alpha_{s})*cos(\alpha)) +eM)\cos(\alpha)\\
*sin(\theta)*d\alpha*d\theta*R_{e}^2/(r^2\pi) d\alpha*d\theta$$
\end{align*}
答案1
在你的情况下最好使用multline
环境align
:
\documentclass[12pt]{article}
\usepackage{amsmath}
\begin{document}
\begin{multline*}
\phi_{net}
= \int_{\theta=0}^{\theta=\theta_{\max}}
\int_{\alpha=\alpha_{\min}}^{\alpha=\alpha_{\max}}
\bigl(aE_{s}\cos(sin(\alpha_{s})
\\
*\sin(\alpha)*\cos(\theta_{s}-\theta) + \cos(\theta_{s}-\theta)
\\
+ \cos(\alpha_{s})*\cos(\alpha))+eM)*\cos(\alpha)
\\
*\sin(\theta)\bigr)
*d\alpha*d\theta*R_{e}^2/(r^2\pi) d\alpha*d\theta
\end{multline*}
or
\begin{multline*}
\phi_{net}
= \int_{0}^{\theta_{\max}}
\int_{\alpha_{\min}}^{\alpha_{\max}}
\bigl(aE_{s}\cos(sin(\alpha_{s})\sin(\alpha)\cos(\theta_{s}-\theta)
\\
+\cos(\theta_{s}-\theta) + \cos(\alpha_{s})\cos(\alpha))+eM)
\cos(\alpha)\sin(\theta)\bigr)\, d\alpha\, d\theta\ R_{e}^2/(r^2\pi)\, d\alpha\, d\theta
\end{multline*}
\end{document}
这使:
在第二个例子中,我更改了积分极限的符号,并删除了 * 作为乘法符号(这是方程的通常写法)。否则,对于您的示例来说,上述注释是必不可少的。
答案2
数学看起来不太正确。当然,缺少一个左括号。以下代码\Big\{
在被积函数的开头插入一个指令,并将孤立函数更改)
为\Bigr\}
但是,这个开头的“围栏”可能放得更好后期限aE_{s}
。
\sin and
为了节省相当多的空间,请考虑去掉\cos as well as all of instances of
* . Still more space can be saved by placing the limits of integration above and below the integral symbols instead of off to the right. This may be achieved either by passing the option
intlimits to the
amsmath package -- as is done in the code below -- or by inserting
\limits \int`参数周围的大部分括号*after*
。
不确定如何处理积分双倍的变量。
\documentclass{article}
\usepackage[intlimits]{amsmath}
\begin{document}
\hrule % just to illustrate width of text block
\begin{align*}
\phi_{\textrm{net}}=\smash[b]{\int_{\theta=0}^{\theta_{\max}}
\int_{\alpha=\alpha_{\min}}^{\alpha_{\max}}} &
\Bigl\{aE_{s}\cos\bigl[\sin\alpha_{s}\sin\alpha\cos(\theta_{s}-\theta) + \cos(\theta_{s}-\theta)\\
&\quad + \cos\alpha_{s}\cos\alpha\bigr] +eM\Bigr\} \cos\alpha
\sin\theta \,d\alpha\,d\theta R_{e}^2/(r^2\pi)\, d\alpha\,d\theta
\end{align*}
\end{document}