我有以下代码:
%...
\begin{proof}
Let $P=(x_P, y_P, z_P)$ be a fixed point on the plane, $R$ a fixed length, and $X=(x,y,z)$ a
variable point such that $XP=R$. As $X$ varies, it is obvious that it does so along a circle.
Obviously, we have the displacement vector $\vv{XP}=(x_P - x, y_P - y, z_P - z)$.
Using \ref{distance}, it follows that
\begin{align*}
& XP^2 = - \sum_{cyc} a^2 (y_P - y)(z_P - z) \\
\Leftrightarrow & R^2 = -\sum_{cyc} y_P z_P a^2 + \sum_{cyc} y_P a^2 z
+ \sum_{cyc} z_P a^2 y - \sum_{cyc} a^2 yz \\
%...
并产生以下输出:
您可能会注意到,新页面顶部的间距比默认的 1 英寸边距要大。此外,如果我删除 align* 序列开始前的额外空间,最后一页的最后一句话就会出现在下一页中,填补额外的空间。我该如何删除这个额外的空间?
答案1
在没有 MWE 的情况下,我已经尽力了。
\documentclass{article}
\usepackage{mathtools}
\usepackage{showframe}
\begin{document}
\rule{1pt}{41\baselineskip}
Let $P=(x_P, y_P, z_P)$ be a fixed point on the plane, $R$ a fixed length, and $X=(x,y,z)$ a
variable point such that $XP=R$. As $X$ varies, it is obvious that it does so along a circle.
Obviously, we have the displacement vector $\vec{XP}=(x_P - x, y_P - y, z_P - z)$.
Using \ref{distance}, it follows that
\pagebreak[3]
\begin{align*}
& XP^2 = - \sum_{cyc} a^2 (y_P - y)(z_P - z) \\
\Leftrightarrow & R^2 = -\sum_{cyc} y_P z_P a^2 + \sum_{cyc} y_P a^2 z
+ \sum_{cyc} z_P a^2 y - \sum_{cyc} a^2 yz \\
\end{align*}
\end{document}