我该如何让这些方程组顶部对齐?代码如下:
\begin{align*}
\begin{aligned}
\bullet \sum_{j=0}^{n-1} \binom nj & = \sum_{j=0}^{n-1} \binom nj 1^j 1^{n-j} \\
& = \sum_{j=0}^{n} \binom nj 1^j 1^{n-j} - \binom nn \\
& = \sum_{j=0}^{n-1} \binom nj 1^j 1^{n-j} - 1 \\
& = (1 + 1)^n - 1 \\
& = 2^n - 1
\end{aligned}
&\hspace{3cm}
\begin{aligned}
\bullet \sum_{j=0}^{n} 2^{j+1} \binom nj & = 2 \sum_{j=0}^{n} 2^j \binom nj \\
& = 2(3)^n
\end{aligned}
\end{align*}
答案1
以下是两种可能的解决方案:
\begin{aligned}[t]
\bullet \sum_{j=0}^{n-1} \binom nj & = \sum_{j=0}^{n-1} \binom nj 1^j 1^{n-j} \\
& = \sum_{j=0}^{n} \binom nj 1^j 1^{n-j} - \binom nn \\
& = \sum_{j=0}^{n-1} \binom nj 1^j 1^{n-j} - 1 \\
& = (1 + 1)^n - 1 \\
& = 2^n - 1
\end{aligned}
\hspace{3cm}
\begin{aligned}[t]
\bullet \sum_{j=0}^{n} 2^{j+1} \binom nj & = 2 \sum_{j=0}^{n} 2^j \binom nj \\
& = 2(3)^n
\end{aligned}
\end{方程*}
答案2
&
每行也可以有多个。&
假设每个偶数分隔方程式。方程式将均匀分布在 上\textwidth
。
\documentclass{article}
\usepackage{mathtools}
\usepackage{showframe}
\begin{document}
\begin{align*}
\bullet \sum_{j=0}^{n-1} \binom nj & = \sum_{j=0}^{n-1} \binom nj 1^j 1^{n-j} &
\bullet \sum_{j=0}^{n} 2^{j+1} \binom nj & = 2 \sum_{j=0}^{n} 2^j \binom nj \\
& = \sum_{j=0}^{n} \binom nj 1^j 1^{n-j} - \binom nn &
& = 2(3)^n \\
& = \sum_{j=0}^{n-1} \binom nj 1^j 1^{n-j} - 1 \\
& = (1 + 1)^n - 1 \\
& = 2^n - 1
\end{align*}
\end{document}