条目错误

条目错误

我正在写一份包含几个章节的报告。当我尝试在 TeXstudio 中运行它时,它给出了错误“定义中的参数编号非法\NewCount\begin{itemize}

我的序言如下,

\documentclass[
11pt, 
english, 
singlespacing, 
]{MastersDoctoralThesis} % The class file specifying the document structure

\usepackage[utf8]{inputenc} % Required for inputting international characters
 %\usepackage[utf8x]{inputenc}

\usepackage[T1]{fontenc} % Output font encoding for international characters

\usepackage{palatino} % Use the Palatino font by default
\usepackage{amsmath}
\usepackage{rotating}
\usepackage{float}

\usepackage[backend=biber,style=authoryear-comp, maxcitenames=2, natbib=true, 
uniquename=false]{biblatex} % User the bibtex backend with the authoryear 
citation style (which resembles APA)
%\usepackage[natbib, maxcitenames=3, mincitenames=11, style=apa]{biblatex}


\addbibresource{Muhas_Library.bib} % The filename of the bibliohy

\usepackage[autostyle=true]{csquotes} % Required to generate language- 
dependent quotes in the bibliography
\usepackage[normal]{subfigure}


\mainmatter % Begin numeric (1,2,3...) page numbering

\pagestyle{thesis} % Return the page headers back to the "thesis" style

% Include the chapters of the thesis as separate files from the Chapters folder
% Uncomment the lines as you write the chapters

\input{Chapters/Chapter1}
\input{Chapters/Chapter2} 
\input{Chapters/Chapter3}
\input{Chapters/Chapter4} 
\input{Chapters/Chapter5} 
%\input{Chapters/Chapter6} 
%\input{Chapters/Chapter7} 
%\input{Chapters/Chapter8} 

%----------------------------------------------------------------------------------------
%   THESIS CONTENT - APPENDICES
%----------------------------------------------------------------------------------------

\appendix % Cue to tell LaTeX that the following "chapters" are Appendices

% Include the appendices of the thesis as separate files from the Appendices folder
% Uncomment the lines as you write the Appendices

\input{Appendices/AppendixA}
\input{Appendices/AppendixB}
\input{Appendices/AppendixC}

%----------------------------------------------------------------------------------------
%   BIBLIOGRAPHY
%----------------------------------------------------------------------------------------
\printbibliography[heading=bibintoc]


%----------------------------------------------------------------------------------------

\end{document}

当我从备份中首次编译代码时,它运行良好。当我将另一个文档中的一段复制到仅包含文本和少量引文的第 2 章时,它会在下一章(第 3 章)的enumerate命令中给出错误,而之前该命令运行良好。错误消息是“定义中的参数编号非法\NewCount\begin{enumerate}”。然后,如果我撤消所做的更改并尝试编译,它再次给出相同的错误。我不知道如何解决这个问题,我迫切需要快速帮助,因为我必须尽快完成我的报告。

我正在尝试创建最小工作示例。但是,与此同时,我卸载了 MikTex 和 Texstudio,然后重新安装它们。然后尝试编译,它工作正常,除了 biber 不是最新的,并且引用没有显示。因此,我从控制台更新了 MikTex,然后编译并出现旧错误。我认为更新有问题?

这是我创建的 MWE 和相应错误消息的屏幕截图。

enter image description here

\documentclass{article}

\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{palatino}
\usepackage{amsmath}
\usepackage{rotating}
\usepackage{float}
\usepackage[backend=biber,style=authoryear-comp, maxcitenames=2, natbib=true, uniquename=false]{biblatex}
\addbibresource{Muhas_Library.bib}
\usepackage[autostyle=true]{csquotes}
\usepackage[normal]{subfigure}


\begin{document}


\section{Introduction}

 flows are induced by the variation in eitt flows, is popularly known as the convective flows. This is a combination of two branches of science, namely, heat transfer and fluid mechaniges in handling free surfhe computational cost.and later numerical studies (    ) have been conducted in a number of different domains, such as rectangular, triangular and wedge shape. They have considered a number of different scenarios of application of t

\section{Convective flows}

The , which is basically a force balance in a control volume.

\begin{equation}
\rho.\frac{D\textbf{u}}{Dt}=-\nabla P + \mu \nabla^2 \textbf{u} + F
\label{equ:14}
\end{equation}


If the  ($J$), negligible viscous dissipation ($\mu \phi$) and negligible compressibility effect ($\alpha T \frac{DP}{Dt}$); $\alpha$ is coefficient of thermal expansion,

\begin{align}
\frac{D\textbf{u}}{Dt} &= -\frac{1}{\rho_0}\nabla (P_\delta + \rho \textbf{g} y) + \nu \nabla^2 \textbf{u} + \textbf{g}(1-\alpha\Delta T)
&= -\frac{1}{\rho_0}\nabla P_\delta + \nu \nabla^2 \textbf{u} - \textbf{g}\alpha\Delta T
\end{align}


\section{flow due to diurnal}

One of the vital process wherein water the solar radiation penetrates the water, it's intensity aw ($I = I_o \exp^{-\alpha*y}$). In line with this law, the intensity of light attewater \citep{Farrow1993}. Thus in the shallow regions long-wave lengtpth, whereas short-wavelength ra

A recent review on absorption can be found in \citet{Amber2018}. 



\begin{enumerate}
    \item Improving the bodies.

    the present knowledge on this subject by revealing the necessary numerical techniques, modifications, adjustments and improvements. 

    \item  Developing a  flow condition.

     which will be efficient and effective in the studies of solid-fluid interaction under buoyant flow scenarios.  

    \item  Exploring the values of 

    Achieving this objective will unfold a modelling approach, which will be efficient and effective in the studies of scenarios.

\end{enumerate}

\begin{equation}
\langle \nabla f(\vec{x})\rangle=-\int_Vf(\vec{x'})\nabla' W(\vec{x}-\vec{x'},h)d\vec{x'},\label{eq:kernel_gradient}
\end{equation}

\begin{itemize}
    \item[-] $W$ is usually an even function with respect to $\vec{x}$, it is positive, having the maximum value at $\vec{x}$ and decreases monotonically with the distance from $\vec{x}$;

    \item[-] {\it normalization condition}:

    \begin{equation}
    \int_VW(\vec{x}-\vec{x'},h)d\vec{x'}=1;
    \end{equation}
    \\

    \item[-] {\it Dirac-$\delta$ property}:

    \begin{equation}
    \lim_{h\to 0}W(\vec{x}-\vec{x'},h)=\delta(\vec{x}-\vec{x'});
    \end{equation}
    \\

    \item[-] {\it compact support}:

    \begin{equation}
    W(\vec{x}-\vec{x'},h)=0\ {\rm when}\ |\vec{x}-\vec{x'}|>\kappa h,
    \end{equation}
\end{itemize}

\end{document} 

新编辑的代码带有@Zarco 的评论;但出现相同的错误 :(

\documentclass{article}

\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{palatino}
\usepackage{amsmath}
\usepackage{rotating}
\usepackage{float}
\usepackage[backend=biber,style=authoryear-comp, maxcitenames=2, natbib=true, uniquename=false]{biblatex}
\addbibresource{Muhas_Library.bib}
\usepackage[autostyle=true]{csquotes}
\usepackage[normal]{subfigure}


\begin{document}


\section{Introduction}

flows are induced by the variation in flows, is popularly known as the flows. This is a combination of two branches of science, namely, heat transfer and fluid  in handling free computational cost. and later numerical studies (    ) have been conducted in a number of different domains, such as rectangular, triangular and wedge shape. They have considered a number of different scenarios of application of t

\section{Convective flows}

which is basically a force balance in a control volume.

\begin{equation}
\rho.\frac{D\mathbf{u}}{Dt}=-\nabla P + \mu \nabla^2 \mathbf{u} + F
\label{equ:14}
\end{equation}

If the  ($J$), negligible viscous dissipation ($\mu \phi$) and negligible compressibility effect ($\alpha T \frac{DP}{Dt}$); $\alpha$ is coefficient of thermal expansion,

\begin{align}
\frac{D\mathbf{u}}{Dt} &= -\frac{1}{\rho_0}\nabla (P_\delta + \rho \mathbf{g} y) + \nu \nabla^2 \mathbf{u} + \mathbf{g}(1-\alpha\Delta T)\\
&= -\frac{1}{\rho_0}\nabla P_\delta + \nu \nabla^2 \mathbf{u} - \mathbf{g}\alpha\Delta T
\end{align}

\section{flow due to diurnal}

One of the vital process wherein water the solar radiation penetrates the water, it's intensity aw ($I = I_o \exp^{-\alpha*y}$). In line with this law, the intensity of light attewater \citep{Farrow1993}. Thus in the shallow regions long-wave lengtpth, whereas short-wavelength 

\begin{enumerate}
    \item Improving the bodies.

    the present knowledge on this subject by revealing the necessary numerical techniques, modifications, adjustments and improvements. 

    \item  Developing a  flow condition.

     which will be efficient and effective in the studies of solid-fluid interaction under buoyant flow scenarios.  

    \item  Exploring the values of 

    Achieving this objective will unfold a modelling approach, which will be efficient and effective in the studies of scenarios.

\end{enumerate}

\begin{equation}
\langle \nabla f(\vec{x})\rangle=-\int_Vf(\vec{x'})\nabla' W(\vec{x}-\vec{x'},h)d\vec{x'},\label{eq:kernel_gradient}
\end{equation}

\begin{itemize}
    \item[-] $W$ is usually an even function with respect to $\vec{x}$, it is positive, having the maximum value at $\vec{x}$ and decreases monotonically with the distance from $\vec{x}$;

    \item[-] {\it normalization condition}:

    \begin{equation}
    \int_VW(\vec{x}-\vec{x'},h)d\vec{x'}=1;
    \end{equation}


    \item[-] {\it Dirac-$\delta$ property}:

    \begin{equation}
    \lim_{h\to 0}W(\vec{x}-\vec{x'},h)=\delta(\vec{x}-\vec{x'});
    \end{equation}


    \item[-] {\it compact support}:

    \begin{equation}
    W(\vec{x}-\vec{x'},h)=0\ {\rm when}\ |\vec{x}-\vec{x'}|>\kappa h,
    \end{equation}
\end{itemize}

\end{document}  

答案1

这更像是一个扩展的评论而不是答案:

  • 显然,您使用了一个非常古老的“模板”,该模板使用的语法\it \bf已经过时 20 多年了(但不知何故仍然有效……)。在文本中,正确的语法是\textit{...}{\itshape ...}\textbf{...}{\bfseries ...},和 在数学环境中\mathbf{...},或者\bm{...}如果您使用bm粗体数学字母包(变量)
  • 我怀疑粗体变量表示向量和矩阵,如果是这样,为什么在某些方程式中使用符号\vec{x}
  • 在编写数学表达式时可以方便地physicsesdiff打包。它们支持方便的方式来编写导数,以及其他数学运算符,例如梯度等。
  • 我提到了我的问题biblatex:我的biblatex安装有问题(我没有使用它),选项maxcitenames不起作用(但这似乎对你有用)
  • 为了消除您的问题,我建议您测试以下 MWE:

    \documentclass{article}
    \usepackage{amsmath}
    \usepackage{physics}% for make typesetting equations for physics simpler, faster, and more human-readable.
    
    \usepackage{enumitem}% for simpler customization of used lists
    \setlist[itemize]{label= --}
    
    \usepackage{lipsum} % for dummy text
    \begin{document}
    
    \section{Flow due to diurnal}
    \lipsum[66]% for dummy text
    
        \begin{enumerate}
    \item Improving the bodies \citep[587]{Muha:2018}.
    
        the present knowledge on this subject by revealing the necessary numerical techniques, modifications, adjustments and improvements.
    \item  Developing a  flow condition.
    
         This will be efficient and effective in the studies of solid-fluid interaction under buoyant flow scenarios.
    \item  Exploring the values of
    
        Achieving this objective will unfold a modelling approach, which will be efficient and effective in the studies of scenarios.
    \end{enumerate}
    
    \begin{equation}\label{eq:kernel_gradient}
    \langle \grad f(\vec{x})\rangle=-\int_Vf(\vec{x'})\grad' W(\vec{x}-\vec{x'},h)\dd\vec{x'},
    \end{equation}
    or using bold faces variables for vectors (recommended):        
    \begin{equation}\label{eq:kernel_gradient}
    \langle \grad f(\mathbf{x})\rangle=-\int_V f(\mathbf{x'})\grad' W(\mathbf{x}-\mathbf{x'},h)\dd\mathbf{x'},
    \end{equation}
    
        \begin{itemize}
    \item $W$ is usually an even function with respect to $\vec{x}$, it is positive, having the maximum value at $\vec{x}$ and decreases monotonically with the distance from $\vec{x}$;
    \item   \textit{normalization condition}:
        \begin{equation}
        \int_VW(\vec{x}-\vec{x'},h)d\vec{x'}=1;
        \end{equation}
    \item   \textit{Dirac-$\delta$ property}:
        \begin{equation}
    \lim_{h\to 0}W(\vec{x}-\vec{x'},h) = \delta(\vec{x}-\vec{x'})
        \end{equation}
    \item   \textit{compact support}:
        \begin{equation}
    W(\vec{x}-\vec{x'},h) =0 \quad \text{when } |\vec{x}-\vec{x'}|>\kappa h,
        \end{equation}
    \end{itemize}
    \lipsum[66]%for dummy text
    \end{document}
    
  • 如果有效,请尝试逐步在序言中添加其他使用的软件包(请使用其最新版本),然后查看上述内容平均能量损失 (最小工作示例)仍然有效

  • 下一步是将您的文本添加到我的平均能量损失。在文本中,请首先纠正我在评论中提到的所有内容,并考虑上面的方法平均能量损失书面。
  • 如果上述平均能量损失不起作用,那么首先查看编辑器中的设置(如果它使用 Unicode 编码),如果没有任何帮助,请尝试重新安装 LaTeX 发行版或尝试使用 Overleaf 在线服务。
  • 如果我的平均能量损失无法与您的 配合使用\documentclass,那么它可能以某种方式损坏或对itemize环境进行了重新定义。在这种情况下,您需要查看其代码或最好使用其他最新的“模板”。

我希望这个扩展评论能对你有所帮助。平均能量损失以上产生以下结果,没有任何错误,坏框或警告:

enter image description here

相关内容