\documentclass[a4paper,oneside,11pt]{book}
\usepackage[left=4cm,right=3cm,top=4cm,bottom=3cm]{geometry}
\usepackage{graphicx}
\usepackage{amsmath}
\begin{document}
\begin{table}[h!]
\centering
\caption{Tabel dari t-norm dan t-conorm}
\resizebox{\textwidth}{!}{
\renewcommand{\arraystretch}{1.5}
\begin{tabular}{|p{2cm}|c|c|}
\hline
Nama&t-norm&t-conorm\\
\hline
Standar&$T_m(x,y)=\min(x,y)$&$C_m(x,y)=\max(x,y)$\\
\hline
Jumlah terbatas&$T_b(x,y)=\max(0,x+y-1)$&$C_b(x,y)=\min(1,x+y)$\\
\hline
Hasil kali/ jumlah aljabar&$T_p(x,y)=xy$&$C_p(x,y)=x+y-xy$\\
\hline
Drastik&$T_D(x,y)=
\begin{cases}
y&\text{jika }x=1\\
x&\text{jika }y=1\\
0&\text{selainnya}
\end{cases}$
&
$C_D(x,y)=
\begin{cases}
y&\text{jika }x=0\\
x&\text{jika }y=0\\
1&\text{selainnya}
\end{cases}
$
\\
\hline
Nilpoten minimum/ maksimum&$T_{nM}(x,y)=
\begin{cases}
\min(x,y)&\text{jika }x+y> 1\\
0&\text{selainnya}
\end{cases}$&
$
C_{nM}(x,y)=
\begin{cases}
\max(x,y)&\text{jika }x+y<1\\
1&\text{selainnya}
\end{cases}
$
\\
\hline
Hasil kali Hamacher/ Jumlah Einstein&$T_{H_0}(x,y)=
\begin{cases}
0&\text{jika }x=y=0\\
\dfrac{xy}{x+y-xy}&\text{selainnya}
\end{cases}$&
$
C_{H_2}(x,y)=\dfrac{x+y}{1+xy}
$
\\
\hline
\end{tabular}
\label{tabelnorma}
}
\end{table}
\end{document}
答案1
我建议您使用tabular*
环境并将相对字体大小切换为\footnotesize
;这样您就可以摆脱\resizebox
包装器。要使单元格内容垂直居中,我建议使用m
而不是p
列类型。最后但并非最不重要的是,我会通过删除所有垂直线和大多数水平线来使表格看起来更加开放。
\documentclass[a4paper,oneside,11pt]{book}
\usepackage[left=4cm,right=3cm,top=4cm,bottom=3cm]{geometry}
% new stuff:
\usepackage[indonesian]{babel} % is this correct?
\usepackage[skip=0.333\baselineskip]{caption}
\usepackage{amsmath} % for 'cases' environment
\usepackage{booktabs} % for well-spaced horizontal rules
\usepackage{array} % for '\newcolumntype' macro
\newcolumntype{C}{>{$}c<{$}} % centered, automatic math mode
\newcolumntype{P}[1]{>{\raggedright\arraybackslash}m{#1}}
\newlength\mylen
\begin{document}
\begin{table}[h!]
\captionsetup{font=small} % or: \captionsetup{font=footnotesize}
\footnotesize
\setlength\tabcolsep{0pt} % make LaTeX figure out intercol. whitespace amount
\settowidth{\mylen}{Hamacher/} % width of 1st col.
\caption{Tabel dari $t$-norm dan $t$-conorm}
\label{tabelnorma}
\begin{tabular*}{\textwidth}{@{\extracolsep{\fill}} P{\mylen} CC @{}}
\toprule
Nama
& \text{$t$-norm}
& \text{$t$-conorm} \\
\midrule
Standar
& T_m(x,y)=\min(x,y)
& C_m(x,y)=\max(x,y)\\
\addlinespace
Jumlah terbatas
& T_b(x,y)=\max(0,x+y-1)
& C_b(x,y)=\min(1,x+y)\\
\addlinespace
Hasil kali\slash jumlah aljabar
& T_p(x,y)=xy
& C_p(x,y)=x+y-xy\\
\addlinespace
Drastik
& T_D(x,y)=
\begin{cases}
y & \text{jika $x=1$}\\
x & \text{jika $y=1$}\\
0 & \text{selainnya}
\end{cases}
& C_{\!D}(x,y)=
\begin{cases}
y & \text{jika $x=0$}\\
x & \text{jika $y=0$}\\
1 & \text{selainnya}
\end{cases} \\
\addlinespace
Nilpoten minimum\slash maksimum
& T_{nM}(x,y)=
\begin{cases}
\min(x,y) & \text{jika $x+y> 1$}\\
0 & \text{selainnya}
\end{cases}
& C_{nM}(x,y)=
\begin{cases}
\max(x,y) & \text{jika $x+y<1$}\\
1 & \text{selainnya}
\end{cases} \\
\addlinespace
Hasil kali Hamacher\slash Jumlah Einstein
& T_{H_0}(x,y)=
\begin{cases}
0 & \text{jika $x=y=0$}\\
\dfrac{xy}{x+y-xy} & \text{selainnya}
\end{cases}
& C_{H_2}(x,y)=\dfrac{x+y}{1+xy} \\ \addlinespace
\bottomrule
\end{tabular*}
\end{table}
\end{document}
答案2
这是一个快速解决方案,用\hfill
,第二个单词后面跟着\strut
(零宽度字符)。
\hline
\hfill Nama\hfill \strut&t-norm&t-conorm\\
\hline
\documentclass[a4paper,oneside,11pt]{book}
\usepackage[left=4cm,right=3cm,top=4cm,bottom=3cm]{geometry}
\usepackage{graphicx}
\usepackage{amsmath}
\begin{document}
\begin{table}[h!]
\centering
\caption{Tabel dari t-norm dan t-conorm}
\resizebox{\textwidth}{!}{
\renewcommand{\arraystretch}{1.5}
\begin{tabular}{|p{2cm}|c|c|}
\hline
\hfill Nama\hfill \strut&t-norm&t-conorm\\
\hline
Standar&$T_m(x,y)=\min(x,y)$&$C_m(x,y)=\max(x,y)$\\
\hline
Jumlah terbatas&$T_b(x,y)=\max(0,x+y-1)$&$C_b(x,y)=\min(1,x+y)$\\
\hline
Hasil kali/ jumlah aljabar&$T_p(x,y)=xy$&$C_p(x,y)=x+y-xy$\\
\hline
Drastik&$T_D(x,y)=
\begin{cases}
y&\text{jika }x=1\\
x&\text{jika }y=1\\
0&\text{selainnya}
\end{cases}$
&
$C_D(x,y)=
\begin{cases}
y&\text{jika }x=0\\
x&\text{jika }y=0\\
1&\text{selainnya}
\end{cases}
$
\\
\hline
Nilpoten minimum/ maksimum&$T_{nM}(x,y)=
\begin{cases}
\min(x,y)&\text{jika }x+y> 1\\
0&\text{selainnya}
\end{cases}$&
$
C_{nM}(x,y)=
\begin{cases}
\max(x,y)&\text{jika }x+y<1\\
1&\text{selainnya}
\end{cases}
$
\\
\hline
Hasil kali Hamacher/ Jumlah Einstein&$T_{H_0}(x,y)=
\begin{cases}
0&\text{jika }x=y=0\\
\dfrac{xy}{x+y-xy}&\text{selainnya}
\end{cases}$&
$
C_{H_2}(x,y)=\dfrac{x+y}{1+xy}
$
\\
\hline
\end{tabular}
\label{tabelnorma}
}
\end{table}
\end{document}