第 24 页这次谈话找到这张图片
它应该描绘原子集 e^{i \phi} [ 1, e^{2 pi if}, e^{4 pi if}, ... e^{2 (n - 1) pi if}]^T,其中 phi 在 [0, 2 pi) 中,f 在 [0, 1)。 我怀疑只绘制了向量前三个分量的实部,以表示不同的 phi 值,但事实并非如此。
如果有人能确定到底绘制了什么以及如何实现表面着色,我将不胜感激。
平均能量损失
\documentclass[tikz]{standalone}
\usepackage{pgfplots}
\begin{document}
\begin{tikzpicture}
\begin{axis}[grid = major, view={-30}{30}]
\addplot3[variable=t,samples = 60,domain=0:1]
({cos(2 * pi * deg(t))},{cos(4 * pi * deg(t))}, {cos(6 * pi * deg(t))});
\end{axis}
\end{tikzpicture}
\end{document}
答案1
正如@Symbol 1 所说,该图似乎对应于三个连续元素的实部+凸包。
我在 Matlab 中尝试过,最接近的图对应于[cos(2*pi*f+phi),cos(4*pi*f+phi),cos(6*pi*f+phi)]
和phi=pi/2
和f in [0,1]
结果如下:
这是由以下 Matlab 代码生成的:
f=0:0.01:1;
phi=pi/2;
xx=cos(2*pi*f+phi);
yy=cos(4*pi*f+phi);
zz=cos(6*pi*f+phi);
[k1] = convhull(xx,yy,zz);
trimesh(k1,xx,yy,zz)
hold on
plot3(cos(2*pi*f+phi),cos(4*pi*f+phi),cos(6*pi*f+phi),'r','linewidth',2)
带有 Jet 色彩图选项。
您可以使用matlab2tikz获取 LaTeX 代码,然后可以使用 pgfplots 包对其进行绘图。以下是我的尝试:
我修改了 Latex 代码:
- 删除了三个元素的图(上图中的红色曲线)
- 不透明度从 1 更改为 0.95。
这是 LaTeX 主文件:
\documentclass[border=0.2cm]{standalone}
\usepackage{pgfplots}
\pgfplotsset{compat=1.11}
\begin{document}
\input{atomicSet}
\end{document}
以及插图文件,名为atomicSet.tex
:
\begin{tikzpicture}
\begin{axis}[%
width=3.743in,
height=2.983in,
scale only axis,
colormap/jet,
xmin=-1,
xmax=1,
ymin=-1,
ymax=1,
zmin=-1,
zmax=1,
view={-37.5}{30},
grid,
]
\addplot3[area legend,opacity=0.95, table/row sep=crcr, patch, shader=flat corner, fill=white, patch table with point meta={%
8 9 42 -0.998026728428272\\
8 42 75 -0.998026728428272\\
8 74 9 -0.998026728428272\\
8 75 74 -0.998026728428272\\
9 10 41 -0.992114701314478\\
9 41 42 -0.992114701314478\\
9 70 10 -0.992114701314478\\
9 71 70 -0.992114701314478\\
9 72 71 -0.992114701314478\\
9 73 72 -0.992114701314478\\
9 74 73 -0.992114701314478\\
10 11 40 -0.951056516295154\\
10 40 41 -0.951056516295154\\
10 66 11 -0.951056516295154\\
10 67 66 -0.951056516295154\\
10 68 67 -0.951056516295154\\
10 69 68 -0.951056516295154\\
10 70 69 -0.951056516295154\\
11 12 38 -0.876306680043864\\
11 38 39 -0.876306680043864\\
11 39 40 -0.876306680043864\\
11 64 12 -0.876306680043864\\
11 65 64 -0.876306680043864\\
11 66 65 -0.876306680043864\\
12 13 38 -0.770513242775789\\
12 63 13 -0.770513242775789\\
12 64 63 -0.770513242775789\\
13 14 37 -0.63742398974869\\
13 37 38 -0.63742398974869\\
13 62 14 -0.63742398974869\\
13 63 62 -0.63742398974869\\
14 15 35 -0.481753674101715\\
14 35 36 -0.481753674101715\\
14 36 37 -0.481753674101715\\
14 61 15 -0.481753674101715\\
14 62 61 -0.481753674101715\\
15 16 35 -0.309016994374948\\
15 61 16 -0.309016994374948\\
16 17 34 -0.125333233564304\\
16 34 35 -0.125333233564304\\
16 60 17 -0.125333233564304\\
16 61 60 -0.125333233564304\\
17 18 32 0.0627905195293128\\
17 32 33 0.0627905195293128\\
17 33 34 0.0627905195293128\\
17 60 18 0.0627905195293128\\
18 19 32 0.248689887164855\\
18 60 19 0.248689887164855\\
19 20 30 0.425779291565073\\
19 30 31 0.425779291565073\\
19 31 32 0.425779291565073\\
19 60 20 0.425779291565073\\
20 21 29 0.587785252292473\\
20 29 30 0.587785252292473\\
20 59 21 0.587785252292473\\
20 60 59 0.587785252292473\\
21 22 29 0.728968627421411\\
21 59 22 0.728968627421411\\
22 23 27 0.844327925502015\\
22 27 28 0.844327925502015\\
22 28 29 0.844327925502015\\
22 59 23 0.844327925502015\\
23 24 27 0.929776485888251\\
23 59 24 0.929776485888251\\
24 25 26 0.982287250728689\\
24 26 27 0.982287250728689\\
24 58 25 0.982287250728689\\
24 59 58 0.982287250728689\\
25 58 92 1\\
25 92 26 1\\
26 91 27 0.982287250728689\\
26 92 91 0.982287250728689\\
27 91 28 0.929776485888251\\
28 91 29 0.844327925502015\\
29 91 30 0.728968627421412\\
30 90 31 0.587785252292473\\
30 91 90 0.587785252292473\\
31 90 32 0.425779291565073\\
32 90 33 0.248689887164855\\
33 90 34 0.0627905195293133\\
34 89 35 -0.125333233564304\\
34 90 89 -0.125333233564304\\
35 89 36 -0.309016994374947\\
36 88 37 -0.481753674101714\\
36 89 88 -0.481753674101714\\
37 88 38 -0.637423989748689\\
38 86 39 -0.770513242775789\\
38 87 86 -0.770513242775789\\
38 88 87 -0.770513242775789\\
39 84 40 -0.876306680043863\\
39 85 84 -0.876306680043863\\
39 86 85 -0.876306680043863\\
40 80 41 -0.951056516295153\\
40 81 80 -0.951056516295153\\
40 82 81 -0.951056516295153\\
40 83 82 -0.951056516295153\\
40 84 83 -0.951056516295153\\
41 76 42 -0.992114701314478\\
41 77 76 -0.992114701314478\\
41 78 77 -0.992114701314478\\
41 79 78 -0.992114701314478\\
41 80 79 -0.992114701314478\\
42 76 75 -0.998026728428272\\
58 59 91 0.998026728428272\\
58 91 92 0.998026728428272\\
59 60 91 0.992114701314478\\
60 61 89 0.951056516295154\\
60 89 90 0.951056516295154\\
60 90 91 0.951056516295154\\
61 62 89 0.876306680043864\\
62 63 88 0.77051324277579\\
62 88 89 0.77051324277579\\
63 64 86 0.63742398974869\\
63 86 87 0.63742398974869\\
63 87 88 0.63742398974869\\
64 65 86 0.481753674101715\\
65 66 85 0.30901699437495\\
65 85 86 0.30901699437495\\
66 67 84 0.125333233564306\\
66 84 85 0.125333233564306\\
67 68 83 -0.0627905195293107\\
67 83 84 -0.0627905195293107\\
68 69 81 -0.248689887164853\\
68 81 82 -0.248689887164853\\
68 82 83 -0.248689887164853\\
69 70 80 -0.425779291565071\\
69 80 81 -0.425779291565071\\
70 71 80 -0.587785252292473\\
71 72 78 -0.72896862742141\\
71 78 79 -0.72896862742141\\
71 79 80 -0.72896862742141\\
72 73 77 -0.844327925502015\\
72 77 78 -0.844327925502015\\
73 74 77 -0.929776485888251\\
74 75 76 -0.982287250728688\\
74 76 77 -0.982287250728688\\
}]
table[row sep=crcr] {%
x y z\\
6.12323399573677e-17 6.12323399573677e-17 6.12323399573677e-17\\
-0.0627905195293134 -0.125333233564304 -0.187381314585725\\
-0.125333233564304 -0.248689887164855 -0.368124552684678\\
-0.187381314585725 -0.368124552684678 -0.535826794978996\\
-0.248689887164855 -0.481753674101715 -0.684547105928689\\
-0.309016994374947 -0.587785252292473 -0.809016994374947\\
-0.368124552684678 -0.684547105928689 -0.904827052466019\\
-0.425779291565073 -0.770513242775789 -0.968583161128631\\
-0.481753674101715 -0.844327925502015 -0.998026728428272\\
-0.535826794978996 -0.904827052466019 -0.992114701314478\\
-0.587785252292473 -0.951056516295154 -0.951056516295154\\
-0.63742398974869 -0.982287250728689 -0.876306680043864\\
-0.684547105928689 -0.998026728428272 -0.770513242775789\\
-0.728968627421411 -0.998026728428272 -0.63742398974869\\
-0.770513242775789 -0.982287250728689 -0.481753674101715\\
-0.809016994374947 -0.951056516295154 -0.309016994374948\\
-0.844327925502015 -0.904827052466019 -0.125333233564304\\
-0.876306680043864 -0.844327925502015 0.0627905195293128\\
-0.904827052466019 -0.770513242775789 0.248689887164855\\
-0.929776485888251 -0.684547105928689 0.425779291565073\\
-0.951056516295154 -0.587785252292473 0.587785252292473\\
-0.968583161128631 -0.481753674101716 0.728968627421411\\
-0.982287250728689 -0.368124552684678 0.844327925502015\\
-0.992114701314478 -0.248689887164855 0.929776485888251\\
-0.998026728428272 -0.125333233564305 0.982287250728689\\
-1 -1.83697019872103e-16 1\\
-0.998026728428272 0.125333233564304 0.982287250728689\\
-0.992114701314478 0.248689887164855 0.929776485888251\\
-0.982287250728689 0.368124552684678 0.844327925502015\\
-0.968583161128631 0.481753674101715 0.728968627421412\\
-0.951056516295154 0.587785252292473 0.587785252292473\\
-0.929776485888251 0.684547105928689 0.425779291565073\\
-0.904827052466019 0.770513242775789 0.248689887164855\\
-0.876306680043864 0.844327925502015 0.0627905195293133\\
-0.844327925502015 0.90482705246602 -0.125333233564304\\
-0.809016994374947 0.951056516295154 -0.309016994374947\\
-0.770513242775789 0.982287250728689 -0.481753674101714\\
-0.728968627421412 0.998026728428272 -0.637423989748689\\
-0.684547105928689 0.998026728428272 -0.770513242775789\\
-0.63742398974869 0.982287250728689 -0.876306680043863\\
-0.587785252292473 0.951056516295154 -0.951056516295153\\
-0.535826794978997 0.90482705246602 -0.992114701314478\\
-0.481753674101716 0.844327925502016 -0.998026728428272\\
-0.425779291565073 0.77051324277579 -0.968583161128631\\
-0.368124552684678 0.684547105928689 -0.90482705246602\\
-0.309016994374948 0.587785252292473 -0.809016994374948\\
-0.248689887164855 0.481753674101715 -0.684547105928689\\
-0.187381314585725 0.368124552684678 -0.535826794978996\\
-0.125333233564305 0.248689887164855 -0.368124552684678\\
-0.0627905195293132 0.125333233564305 -0.187381314585726\\
-1.83697019872103e-16 3.06161699786838e-16 -4.28626379701574e-16\\
0.0627905195293128 -0.125333233564304 0.187381314585725\\
0.125333233564304 -0.248689887164855 0.368124552684677\\
0.187381314585725 -0.368124552684677 0.535826794978997\\
0.248689887164855 -0.481753674101716 0.684547105928689\\
0.309016994374947 -0.587785252292474 0.809016994374947\\
0.368124552684678 -0.684547105928689 0.90482705246602\\
0.425779291565073 -0.770513242775789 0.968583161128631\\
0.481753674101716 -0.844327925502015 0.998026728428272\\
0.535826794978997 -0.904827052466019 0.992114701314478\\
0.587785252292473 -0.951056516295153 0.951056516295154\\
0.637423989748689 -0.982287250728689 0.876306680043864\\
0.684547105928689 -0.998026728428272 0.77051324277579\\
0.728968627421411 -0.998026728428272 0.63742398974869\\
0.770513242775789 -0.982287250728689 0.481753674101715\\
0.809016994374947 -0.951056516295154 0.30901699437495\\
0.844327925502015 -0.90482705246602 0.125333233564306\\
0.876306680043863 -0.844327925502016 -0.0627905195293107\\
0.904827052466019 -0.77051324277579 -0.248689887164853\\
0.929776485888251 -0.68454710592869 -0.425779291565071\\
0.951056516295154 -0.587785252292473 -0.587785252292473\\
0.968583161128631 -0.481753674101716 -0.72896862742141\\
0.982287250728689 -0.368124552684678 -0.844327925502015\\
0.992114701314478 -0.248689887164856 -0.929776485888251\\
0.998026728428272 -0.125333233564304 -0.982287250728688\\
1 -4.28626379701574e-16 -1\\
0.998026728428272 0.125333233564303 -0.982287250728689\\
0.992114701314478 0.248689887164855 -0.929776485888251\\
0.982287250728689 0.368124552684677 -0.844327925502015\\
0.968583161128631 0.481753674101715 -0.728968627421412\\
0.951056516295154 0.587785252292473 -0.587785252292472\\
0.929776485888251 0.684547105928689 -0.425779291565073\\
0.90482705246602 0.770513242775789 -0.248689887164856\\
0.876306680043864 0.844327925502015 -0.0627905195293155\\
0.844327925502016 0.904827052466019 0.125333233564301\\
0.809016994374948 0.951056516295153 0.309016994374947\\
0.77051324277579 0.982287250728688 0.481753674101717\\
0.728968627421412 0.998026728428272 0.637423989748688\\
0.684547105928689 0.998026728428272 0.770513242775789\\
0.63742398974869 0.982287250728689 0.876306680043865\\
0.587785252292473 0.951056516295154 0.951056516295153\\
0.535826794978996 0.904827052466019 0.992114701314478\\
0.481753674101715 0.844327925502015 0.998026728428271\\
0.425779291565073 0.77051324277579 0.968583161128632\\
0.368124552684679 0.68454710592869 0.904827052466019\\
0.309016994374948 0.587785252292474 0.80901699437495\\
0.248689887164855 0.481753674101716 0.68454710592869\\
0.187381314585725 0.368124552684678 0.535826794978996\\
0.125333233564305 0.248689887164856 0.368124552684682\\
0.0627905195293133 0.125333233564304 0.187381314585726\\
3.06161699786838e-16 5.51091059616309e-16 -9.80336419954471e-16\\
};
\end{axis}
\end{tikzpicture}%