重新创建原子集的图像

重新创建原子集的图像

第 24 页这次谈话找到这张图片

在此处输入图片描述

它应该描绘原子集 e^{i \phi} [ 1, e^{2 pi if}, e^{4 pi if}, ... e^{2 (n - 1) pi if}]^T,其中 phi 在 [0, 2 pi) 中,f 在 [0, 1)。 我怀疑只绘制了向量前三个分量的实部,以表示不同的 phi 值,但事实并非如此。

如果有人能确定到底绘制了什么以及如何实现表面着色,我将不胜感激。

平均能量损失

\documentclass[tikz]{standalone}
\usepackage{pgfplots}

\begin{document}

\begin{tikzpicture}
        \begin{axis}[grid = major, view={-30}{30}]
        \addplot3[variable=t,samples = 60,domain=0:1]
        ({cos(2 * pi * deg(t))},{cos(4 * pi * deg(t))}, {cos(6 * pi * deg(t))});
        \end{axis}
    \end{tikzpicture}
\end{document}

答案1

正如@Symbol 1 所说,该图似乎对应于三个连续元素的实部+凸包。

我在 Matlab 中尝试过,最接近的图对应于[cos(2*pi*f+phi),cos(4*pi*f+phi),cos(6*pi*f+phi)]phi=pi/2f in [0,1]

结果如下:

在此处输入图片描述

这是由以下 Matlab 代码生成的:

f=0:0.01:1;
phi=pi/2;
xx=cos(2*pi*f+phi);
yy=cos(4*pi*f+phi);
zz=cos(6*pi*f+phi);

[k1] = convhull(xx,yy,zz);
trimesh(k1,xx,yy,zz)

hold on
plot3(cos(2*pi*f+phi),cos(4*pi*f+phi),cos(6*pi*f+phi),'r','linewidth',2)

带有 Jet 色彩图选项。

您可以使用matlab2tikz获取 LaTeX 代码,然后可以使用 pgfplots 包对其进行绘图。以下是我的尝试:

在此处输入图片描述

我修改了 Latex 代码:

  • 删除了三个元素的图(上图中的红色曲线)
  • 不透明度从 1 更改为 0.95。

这是 LaTeX 主文件:

\documentclass[border=0.2cm]{standalone}
\usepackage{pgfplots}
\pgfplotsset{compat=1.11}

\begin{document}

  \input{atomicSet}

\end{document}

以及插图文件,名为atomicSet.tex

\begin{tikzpicture}

\begin{axis}[%
width=3.743in,
height=2.983in,
scale only axis,
colormap/jet,
xmin=-1,
xmax=1,
ymin=-1,
ymax=1,
zmin=-1,
zmax=1,
view={-37.5}{30},
grid,
]
\addplot3[area legend,opacity=0.95, table/row sep=crcr, patch, shader=flat corner, fill=white, patch table with point meta={%
8   9   42  -0.998026728428272\\
8   42  75  -0.998026728428272\\
8   74  9   -0.998026728428272\\
8   75  74  -0.998026728428272\\
9   10  41  -0.992114701314478\\
9   41  42  -0.992114701314478\\
9   70  10  -0.992114701314478\\
9   71  70  -0.992114701314478\\
9   72  71  -0.992114701314478\\
9   73  72  -0.992114701314478\\
9   74  73  -0.992114701314478\\
10  11  40  -0.951056516295154\\
10  40  41  -0.951056516295154\\
10  66  11  -0.951056516295154\\
10  67  66  -0.951056516295154\\
10  68  67  -0.951056516295154\\
10  69  68  -0.951056516295154\\
10  70  69  -0.951056516295154\\
11  12  38  -0.876306680043864\\
11  38  39  -0.876306680043864\\
11  39  40  -0.876306680043864\\
11  64  12  -0.876306680043864\\
11  65  64  -0.876306680043864\\
11  66  65  -0.876306680043864\\
12  13  38  -0.770513242775789\\
12  63  13  -0.770513242775789\\
12  64  63  -0.770513242775789\\
13  14  37  -0.63742398974869\\
13  37  38  -0.63742398974869\\
13  62  14  -0.63742398974869\\
13  63  62  -0.63742398974869\\
14  15  35  -0.481753674101715\\
14  35  36  -0.481753674101715\\
14  36  37  -0.481753674101715\\
14  61  15  -0.481753674101715\\
14  62  61  -0.481753674101715\\
15  16  35  -0.309016994374948\\
15  61  16  -0.309016994374948\\
16  17  34  -0.125333233564304\\
16  34  35  -0.125333233564304\\
16  60  17  -0.125333233564304\\
16  61  60  -0.125333233564304\\
17  18  32  0.0627905195293128\\
17  32  33  0.0627905195293128\\
17  33  34  0.0627905195293128\\
17  60  18  0.0627905195293128\\
18  19  32  0.248689887164855\\
18  60  19  0.248689887164855\\
19  20  30  0.425779291565073\\
19  30  31  0.425779291565073\\
19  31  32  0.425779291565073\\
19  60  20  0.425779291565073\\
20  21  29  0.587785252292473\\
20  29  30  0.587785252292473\\
20  59  21  0.587785252292473\\
20  60  59  0.587785252292473\\
21  22  29  0.728968627421411\\
21  59  22  0.728968627421411\\
22  23  27  0.844327925502015\\
22  27  28  0.844327925502015\\
22  28  29  0.844327925502015\\
22  59  23  0.844327925502015\\
23  24  27  0.929776485888251\\
23  59  24  0.929776485888251\\
24  25  26  0.982287250728689\\
24  26  27  0.982287250728689\\
24  58  25  0.982287250728689\\
24  59  58  0.982287250728689\\
25  58  92  1\\
25  92  26  1\\
26  91  27  0.982287250728689\\
26  92  91  0.982287250728689\\
27  91  28  0.929776485888251\\
28  91  29  0.844327925502015\\
29  91  30  0.728968627421412\\
30  90  31  0.587785252292473\\
30  91  90  0.587785252292473\\
31  90  32  0.425779291565073\\
32  90  33  0.248689887164855\\
33  90  34  0.0627905195293133\\
34  89  35  -0.125333233564304\\
34  90  89  -0.125333233564304\\
35  89  36  -0.309016994374947\\
36  88  37  -0.481753674101714\\
36  89  88  -0.481753674101714\\
37  88  38  -0.637423989748689\\
38  86  39  -0.770513242775789\\
38  87  86  -0.770513242775789\\
38  88  87  -0.770513242775789\\
39  84  40  -0.876306680043863\\
39  85  84  -0.876306680043863\\
39  86  85  -0.876306680043863\\
40  80  41  -0.951056516295153\\
40  81  80  -0.951056516295153\\
40  82  81  -0.951056516295153\\
40  83  82  -0.951056516295153\\
40  84  83  -0.951056516295153\\
41  76  42  -0.992114701314478\\
41  77  76  -0.992114701314478\\
41  78  77  -0.992114701314478\\
41  79  78  -0.992114701314478\\
41  80  79  -0.992114701314478\\
42  76  75  -0.998026728428272\\
58  59  91  0.998026728428272\\
58  91  92  0.998026728428272\\
59  60  91  0.992114701314478\\
60  61  89  0.951056516295154\\
60  89  90  0.951056516295154\\
60  90  91  0.951056516295154\\
61  62  89  0.876306680043864\\
62  63  88  0.77051324277579\\
62  88  89  0.77051324277579\\
63  64  86  0.63742398974869\\
63  86  87  0.63742398974869\\
63  87  88  0.63742398974869\\
64  65  86  0.481753674101715\\
65  66  85  0.30901699437495\\
65  85  86  0.30901699437495\\
66  67  84  0.125333233564306\\
66  84  85  0.125333233564306\\
67  68  83  -0.0627905195293107\\
67  83  84  -0.0627905195293107\\
68  69  81  -0.248689887164853\\
68  81  82  -0.248689887164853\\
68  82  83  -0.248689887164853\\
69  70  80  -0.425779291565071\\
69  80  81  -0.425779291565071\\
70  71  80  -0.587785252292473\\
71  72  78  -0.72896862742141\\
71  78  79  -0.72896862742141\\
71  79  80  -0.72896862742141\\
72  73  77  -0.844327925502015\\
72  77  78  -0.844327925502015\\
73  74  77  -0.929776485888251\\
74  75  76  -0.982287250728688\\
74  76  77  -0.982287250728688\\
}]
table[row sep=crcr] {%
x   y   z\\
6.12323399573677e-17    6.12323399573677e-17    6.12323399573677e-17\\
-0.0627905195293134 -0.125333233564304  -0.187381314585725\\
-0.125333233564304  -0.248689887164855  -0.368124552684678\\
-0.187381314585725  -0.368124552684678  -0.535826794978996\\
-0.248689887164855  -0.481753674101715  -0.684547105928689\\
-0.309016994374947  -0.587785252292473  -0.809016994374947\\
-0.368124552684678  -0.684547105928689  -0.904827052466019\\
-0.425779291565073  -0.770513242775789  -0.968583161128631\\
-0.481753674101715  -0.844327925502015  -0.998026728428272\\
-0.535826794978996  -0.904827052466019  -0.992114701314478\\
-0.587785252292473  -0.951056516295154  -0.951056516295154\\
-0.63742398974869   -0.982287250728689  -0.876306680043864\\
-0.684547105928689  -0.998026728428272  -0.770513242775789\\
-0.728968627421411  -0.998026728428272  -0.63742398974869\\
-0.770513242775789  -0.982287250728689  -0.481753674101715\\
-0.809016994374947  -0.951056516295154  -0.309016994374948\\
-0.844327925502015  -0.904827052466019  -0.125333233564304\\
-0.876306680043864  -0.844327925502015  0.0627905195293128\\
-0.904827052466019  -0.770513242775789  0.248689887164855\\
-0.929776485888251  -0.684547105928689  0.425779291565073\\
-0.951056516295154  -0.587785252292473  0.587785252292473\\
-0.968583161128631  -0.481753674101716  0.728968627421411\\
-0.982287250728689  -0.368124552684678  0.844327925502015\\
-0.992114701314478  -0.248689887164855  0.929776485888251\\
-0.998026728428272  -0.125333233564305  0.982287250728689\\
-1  -1.83697019872103e-16   1\\
-0.998026728428272  0.125333233564304   0.982287250728689\\
-0.992114701314478  0.248689887164855   0.929776485888251\\
-0.982287250728689  0.368124552684678   0.844327925502015\\
-0.968583161128631  0.481753674101715   0.728968627421412\\
-0.951056516295154  0.587785252292473   0.587785252292473\\
-0.929776485888251  0.684547105928689   0.425779291565073\\
-0.904827052466019  0.770513242775789   0.248689887164855\\
-0.876306680043864  0.844327925502015   0.0627905195293133\\
-0.844327925502015  0.90482705246602    -0.125333233564304\\
-0.809016994374947  0.951056516295154   -0.309016994374947\\
-0.770513242775789  0.982287250728689   -0.481753674101714\\
-0.728968627421412  0.998026728428272   -0.637423989748689\\
-0.684547105928689  0.998026728428272   -0.770513242775789\\
-0.63742398974869   0.982287250728689   -0.876306680043863\\
-0.587785252292473  0.951056516295154   -0.951056516295153\\
-0.535826794978997  0.90482705246602    -0.992114701314478\\
-0.481753674101716  0.844327925502016   -0.998026728428272\\
-0.425779291565073  0.77051324277579    -0.968583161128631\\
-0.368124552684678  0.684547105928689   -0.90482705246602\\
-0.309016994374948  0.587785252292473   -0.809016994374948\\
-0.248689887164855  0.481753674101715   -0.684547105928689\\
-0.187381314585725  0.368124552684678   -0.535826794978996\\
-0.125333233564305  0.248689887164855   -0.368124552684678\\
-0.0627905195293132 0.125333233564305   -0.187381314585726\\
-1.83697019872103e-16   3.06161699786838e-16    -4.28626379701574e-16\\
0.0627905195293128  -0.125333233564304  0.187381314585725\\
0.125333233564304   -0.248689887164855  0.368124552684677\\
0.187381314585725   -0.368124552684677  0.535826794978997\\
0.248689887164855   -0.481753674101716  0.684547105928689\\
0.309016994374947   -0.587785252292474  0.809016994374947\\
0.368124552684678   -0.684547105928689  0.90482705246602\\
0.425779291565073   -0.770513242775789  0.968583161128631\\
0.481753674101716   -0.844327925502015  0.998026728428272\\
0.535826794978997   -0.904827052466019  0.992114701314478\\
0.587785252292473   -0.951056516295153  0.951056516295154\\
0.637423989748689   -0.982287250728689  0.876306680043864\\
0.684547105928689   -0.998026728428272  0.77051324277579\\
0.728968627421411   -0.998026728428272  0.63742398974869\\
0.770513242775789   -0.982287250728689  0.481753674101715\\
0.809016994374947   -0.951056516295154  0.30901699437495\\
0.844327925502015   -0.90482705246602   0.125333233564306\\
0.876306680043863   -0.844327925502016  -0.0627905195293107\\
0.904827052466019   -0.77051324277579   -0.248689887164853\\
0.929776485888251   -0.68454710592869   -0.425779291565071\\
0.951056516295154   -0.587785252292473  -0.587785252292473\\
0.968583161128631   -0.481753674101716  -0.72896862742141\\
0.982287250728689   -0.368124552684678  -0.844327925502015\\
0.992114701314478   -0.248689887164856  -0.929776485888251\\
0.998026728428272   -0.125333233564304  -0.982287250728688\\
1   -4.28626379701574e-16   -1\\
0.998026728428272   0.125333233564303   -0.982287250728689\\
0.992114701314478   0.248689887164855   -0.929776485888251\\
0.982287250728689   0.368124552684677   -0.844327925502015\\
0.968583161128631   0.481753674101715   -0.728968627421412\\
0.951056516295154   0.587785252292473   -0.587785252292472\\
0.929776485888251   0.684547105928689   -0.425779291565073\\
0.90482705246602    0.770513242775789   -0.248689887164856\\
0.876306680043864   0.844327925502015   -0.0627905195293155\\
0.844327925502016   0.904827052466019   0.125333233564301\\
0.809016994374948   0.951056516295153   0.309016994374947\\
0.77051324277579    0.982287250728688   0.481753674101717\\
0.728968627421412   0.998026728428272   0.637423989748688\\
0.684547105928689   0.998026728428272   0.770513242775789\\
0.63742398974869    0.982287250728689   0.876306680043865\\
0.587785252292473   0.951056516295154   0.951056516295153\\
0.535826794978996   0.904827052466019   0.992114701314478\\
0.481753674101715   0.844327925502015   0.998026728428271\\
0.425779291565073   0.77051324277579    0.968583161128632\\
0.368124552684679   0.68454710592869    0.904827052466019\\
0.309016994374948   0.587785252292474   0.80901699437495\\
0.248689887164855   0.481753674101716   0.68454710592869\\
0.187381314585725   0.368124552684678   0.535826794978996\\
0.125333233564305   0.248689887164856   0.368124552684682\\
0.0627905195293133  0.125333233564304   0.187381314585726\\
3.06161699786838e-16    5.51091059616309e-16    -9.80336419954471e-16\\
};
\end{axis}

\end{tikzpicture}%

相关内容