dgroup 将方程编号放在左侧

dgroup 将方程编号放在左侧

我正在使用一些由脚本自动生成的方程式,并使用breqn函数进行排版。

使用dgroup会导致我的方程编号位于左侧而不是右侧。我按此顺序调用包,据我从文档中看到的那样,这应该是正确的。

\usepackage{amsmath}
\usepackage{flexisym}
\usepackage{breqn}
\usepackage{bm}
\usepackage{amsfonts}

正在排版的方程式是

\begin{dgroup}
            \begin{dmath*}
                0=\frac{\partial }{\partial t} y_{2}\left(t\right)-\frac{\sin\left(y_{3}\left(t\right)\right)\cdot y_{5}\left(t\right)}{6371}
            \end{dmath*}
            \begin{dmath*}
                0=\frac{\cos\left(y_{3}\left(t\right)\right)\cdot y_{5}\left(t\right)}{6371}-\frac{\partial }{\partial t} y_{1}\left(t\right)
            \end{dmath*}
            \begin{dmath*}
                0=\frac{\cos\left(y_{3}\left(t\right)\right)\cdot \frac{\partial }{\partial t} y_{2}\left(t\right)}{\sin\left(y_{3}\left(t\right)\right)}-\frac{\partial }{\partial t} y_{1}\left(t\right)
            \end{dmath*}
            \begin{dmath*}
                0=y_{6}\left(t\right)-y_{5}\left(t\right)
            \end{dmath*}
            \begin{dmath*}
                0=y_{6}\left(t\right)-\frac{6371\cdot \frac{\partial }{\partial t} y_{2}\left(t\right)}{\sin\left(y_{3}\left(t\right)\right)}
            \end{dmath*}
            \begin{dmath*}
                0=y_{6}\left(t\right)-\frac{6371\cdot \frac{\partial }{\partial t} y_{1}\left(t\right)}{\cos\left(y_{3}\left(t\right)\right)}
            \end{dmath*}
            \begin{dmath*}
                0=y_{4}\left(t\right)-y_{3}\left(t\right)
            \end{dmath*}
            \begin{dmath*}
                0=\frac{\sin\left(y_{4}\left(t\right)\right)\cdot y_{5}\left(t\right)}{6371}-\frac{\partial }{\partial t} y_{2}\left(t\right)
            \end{dmath*}
            \begin{dmath*}
                0=\frac{\cos\left(y_{4}\left(t\right)\right)\cdot y_{5}\left(t\right)}{6371}-\frac{\partial }{\partial t} y_{1}\left(t\right)
            \end{dmath*}
            \begin{dmath*}
                0=\frac{\cos\left(y_{4}\left(t\right)\right)\cdot \frac{\partial }{\partial t} y_{2}\left(t\right)}{\sin\left(y_{4}\left(t\right)\right)}-\frac{\partial }{\partial t} y_{1}\left(t\right)
            \end{dmath*}
            \begin{dmath*}
                0=y_{6}\left(t\right)-\frac{6371\cdot \frac{\partial }{\partial t} y_{2}\left(t\right)}{\sin\left(y_{4}\left(t\right)\right)}
            \end{dmath*}
            \begin{dmath*}
                0=y_{6}\left(t\right)-\frac{6371\cdot \frac{\partial }{\partial t} y_{1}\left(t\right)}{\cos\left(y_{4}\left(t\right)\right)}
            \end{dmath*}
        \end{dgroup}

答案1

不是一个解决方案,但这似乎是 中的一个已知错误breqn,请参阅包装手册

在此处输入图片描述

因此,目前您无法按照自己的方式实现目标。我会检查是否可以找到解决方法。

好的,这是一个不太优雅的解决方法:

\documentclass{article}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{flexisym}
\usepackage{breqn}
\usepackage{bm}

\begin{document}
\begin{equation}
\parbox{.9\linewidth}{%
\begin{dgroup*}
    \begin{dmath*}
        0=\frac{\partial }{\partial t} y_{2}\left(t\right)-\frac{\sin\left(y_{3}\left(t\right)\right)\cdot y_{5}\left(t\right)}{6371}
    \end{dmath*}
    \begin{dmath*}
        0=\frac{\cos\left(y_{3}\left(t\right)\right)\cdot y_{5}\left(t\right)}{6371}-\frac{\partial }{\partial t} y_{1}\left(t\right)
    \end{dmath*}
    \begin{dmath*}
        0=\frac{\cos\left(y_{3}\left(t\right)\right)\cdot \frac{\partial }{\partial t} y_{2}\left(t\right)}{\sin\left(y_{3}\left(t\right)\right)}-\frac{\partial }{\partial t} y_{1}\left(t\right)
    \end{dmath*}
    \begin{dmath*}
        0=y_{6}\left(t\right)-y_{5}\left(t\right)
    \end{dmath*}
    \begin{dmath*}
        0=y_{6}\left(t\right)-\frac{6371\cdot \frac{\partial }{\partial t} y_{2}\left(t\right)}{\sin\left(y_{3}\left(t\right)\right)}
    \end{dmath*}
    \begin{dmath*}
        0=y_{6}\left(t\right)-\frac{6371\cdot \frac{\partial }{\partial t} y_{1}\left(t\right)}{\cos\left(y_{3}\left(t\right)\right)}
    \end{dmath*}
    \begin{dmath*}
        0=y_{4}\left(t\right)-y_{3}\left(t\right)
    \end{dmath*}
    \begin{dmath*}
        0=\frac{\sin\left(y_{4}\left(t\right)\right)\cdot y_{5}\left(t\right)}{6371}-\frac{\partial }{\partial t} y_{2}\left(t\right)
    \end{dmath*}
    \begin{dmath*}
        0=\frac{\cos\left(y_{4}\left(t\right)\right)\cdot y_{5}\left(t\right)}{6371}-\frac{\partial }{\partial t} y_{1}\left(t\right)
    \end{dmath*}
    \begin{dmath*}
        0=\frac{\cos\left(y_{4}\left(t\right)\right)\cdot \frac{\partial }{\partial t} y_{2}\left(t\right)}{\sin\left(y_{4}\left(t\right)\right)}-\frac{\partial }{\partial t} y_{1}\left(t\right)
    \end{dmath*}
    \begin{dmath*}
        0=y_{6}\left(t\right)-\frac{6371\cdot \frac{\partial }{\partial t} y_{2}\left(t\right)}{\sin\left(y_{4}\left(t\right)\right)}
    \end{dmath*}
    \begin{dmath*}
        0=y_{6}\left(t\right)-\frac{6371\cdot \frac{\partial }{\partial t} y_{1}\left(t\right)}{\cos\left(y_{4}\left(t\right)\right)}
    \end{dmath*}
\end{dgroup*}
}
\end{equation}

\end{document}

在此处输入图片描述

相关内容