\left(
这是我的代码,但是当我将和更改\right)
为\Big)
和时它不起作用\Big)
\begin{align*}
\bar{h}_{m}^{jk}&=\omega_{k}h_{m}^{jk}(a)\\
&=\left( \omega_{k}\left\{
\zeta_{h}\mid\zeta_{h}\in p_{1}\circ h_{m}^{jk}(a)\right\} ,\omega
_{k}\left\{ \zeta_{h}\mid\zeta_{h}\in p_{2}\circ h_{m}^{jk}(a)\right\}
,\dots, \right.\\
&\qquad \left.\omega_{k}\left\{ \zeta_{h}\mid\zeta_{h}\in p_{m}\circ h_{m}%
^{jk}(a)\right\} \right) \\
&=\left( \left\{ \bar{\zeta}_{h}\mid\bar{\ze
}_{h}\in p_{1}\circ h_{m}^{jk}(a)\right\} ,\left\{ \bar{\zeta}_{h}\mid
\bar{\zeta}_{h}\in p_{2}\circ h_{m}^{jk}(a)\right\} ,\dots,\left\{ \bar{\zeta
}_{h}\mid\bar{\zeta}_{h}\in p_{m}\circ h_{m}^{jk}(a)\right\} \right) .
\end{align*}
答案1
每个\left
总是与 配对\right
,并且这种配对不能跨越&
或\\
。无论谁编写了你的代码,实际上(正确地)将\left(
和\right.
配对\left.
;\right)
这.
意味着 TeX 不会排版栅栏,但现在知道要测量多少尺寸。
更改\left(
为\Big(
和\right)
意味着\Big)
您将保留\left.
和\right.
,而 TeX 无法理解您要配对的内容。解决方案是,当您更改\left(
为\Big(
和\right)
时\Big)
,您还需要删除现在多余的\left.
和\right.
。
顺便说一句,出于间距目的,您可能需要使用\Bigl(
and \Bigr)
。这告诉 TeX 它正在处理左或右栅栏。
答案2
像这样?
\documentclass{article}
\usepackage{mathtools}
\begin{document}
\begin{align*}
\bar{h}_{m}^{jk}
& = \omega_{k}h_{m}^{jk}(a)\\
& = \begin{multlined}[t]
\biggl(\omega_{k}\Bigl\{
\zeta_{h}\mid\zeta_{h}\in p_{1}\circ h_{m}^{jk}(a)\Bigr\},\omega_{k}
\Bigl\{\zeta_{h}\mid\zeta_{h}\in p_{2}\circ h_{m}^{jk}(a)
\Bigr\}, \dots \\
\dots,
\omega_{k}\Bigl\{\zeta_{h}\mid\zeta_{h}\in p_{m}\circ h_{m}^{jk}(a)
\Bigr\}
\biggr)
\end{multlined} \\
& = \begin{multlined}[t]
\biggl(\Bigl\{\bar{\zeta}_{h}\mid\bar{\zeta}_{h}\in p_{1}\circ h_{m}^{jk}(a)\Bigr\},
\Bigl\{\bar{\zeta}_{h}\mid\bar{\zeta}_{h}\in p_{2}\circ h_{m}^{jk}(a)
\Bigr\},\dots \\
\dots,
\Bigl\{\bar{\zeta}_{h}\mid\bar{\zeta}_{h}\in p_{m}\circ h_{m}^{jk}(a)\Bigr\}
\biggr).
\end{multlined}
\end{align*}
\end{document}
附录:
使用aligned
代替multilined
可以定义锚点,其中 是多线方程的对齐线:
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{align*}
\bar{h}_{m}^{jk}
& = \omega_{k}h_{m}^{jk}(a)\\
& = \begin{aligned}[t]
\biggl(\omega_{k}\Bigl\{
\zeta_{h}\mid\zeta_{h}\in p_{1}\circ h_{m}^{jk}(a)\Bigr\},
& \;\omega_{k}\Bigl\{\zeta_{h}\mid\zeta_{h}\in p_{2}\circ h_{m}^{jk}(a)\Bigr\}, \dots \\
\dots,
& \;\omega_{k}\Bigl\{\zeta_{h}\mid\zeta_{h}\in p_{m}\circ h_{m}^{jk}(a)\Bigr\}\biggr)
\end{aligned} \\
& = \begin{aligned}[t]
\biggl(\Bigl\{\bar{\zeta}_{h}\mid\bar{\zeta}_{h}\in p_{1}\circ h_{m}^{jk}(a)\Bigr\},
&\; \Bigl\{\bar{\zeta}_{h}\mid\bar{\zeta}_{h}\in p_{2}\circ h_{m}^{jk}(a)\Bigr\},\dots \\
\dots,
&\; \Bigl\{\bar{\zeta}_{h}\mid\bar{\zeta}_{h}\in p_{m}\circ h_{m}^{jk}(a)\Bigr\}\biggr).
\end{aligned}
\end{align*}
\end{document}
答案3
我提出了这个变体,其代码稍微简单一些,基于 fleqn
from nccmath
、\DeclarePairedDelimiter
命令 frommathtools
和multlined
环境(同一个包)。
\documentclass[svgnames]{article}
\usepackage{showframe}
\renewcommand{\ShowFrameLinethickness}{0.4pt}
\renewcommand{\ShowFrameColor}{\color{Coral}}
\usepackage{nccmath, mathtools}
\DeclarePairedDelimiter\set\{\}
\begin{document}
\leavevmode\vskip 1cm
\begin{fleqn}
\begin{align*}
\bar{h}_{m}^{jk} &=\omega_{k}h_{m}^{jk}(a) \\
&=\begin{multlined}[t][0.9\linewidth]\Bigl( \omega_{k}\set*{\zeta_{h}\mid\zeta_{h}\in p_{1}\circ h_{m}^{jk}(a)} ,\omega
_{k}\set{ \zeta_{h}\mid\zeta_{h}\in p_{2}\circ h_{m}^{jk}(a)},\dots \\[-1.5ex]
\dots, \omega_{k}\set*{ \zeta_{h}\mid\zeta_{h}\in p_{m}\circ h_{m}^{jk}(a)}\Bigr) \end{multlined} \\
&= \begin{multlined}[t][0.9\linewidth]\Bigl( \set*{ \bar{\zeta}_{h}\mid\bar{\zeta}_{h}\in p_{1}\circ h_{m}^{jk}(a)} ,%
\set*{ \bar{\zeta}_{h}\mid \bar{\zeta}_{h}\in p_{2}\circ h_{m}^{jk}(a)} ,\dots \phantom{.} \\[-1.5ex]
\dots, \set*{ \bar{\zeta}_{h}\mid\bar{\zeta}_{h}\in p_{m}\circ h_{m}^{jk}(a)} \Bigr).
\end{multlined}
\end{align*}
\end{fleqn}
\end{document}