我需要在论文中写下这种情况,并且我需要一些更好的建议。
$\mathcal P(n_0)$: If $U=(u_n)_{n\in \mathbb{N}},\:V=(v_n)_{n\in \mathbb{N}}$ are monotone sequences,
such that, there exists an integer $n_0\in\mathbb{N}^*$ and $A_{n_0},B_{n_0}\subseteq E$ finite
sets which verifie:
$$ \left\{\begin{matrix}
U&\subseteq &A_{n_0}\cup T^{n_0}(U, V )\\
V&\subseteq &B_{n_0}\cup T^{n_0}(V, U )
\end{matrix}\right.$$
\hspace{1.5 cm} then, $U$ and $V$ are relatively weakly compact.
答案1
这看上去可能很复杂,但其实不然。
我的想法是将宽度缩小,这样条件就会从其余材料中脱颖而出。右侧有 2em 边距,左侧有 2em 边距,但从条件的左边缘测量。条件的文本缩进,以便其行恰好位于第一行下方。
我在 的帮助下实现了它enumitem
。
\documentclass{article}
\usepackage{amsmath,amssymb}
\usepackage{enumitem}
\newlength{\conditionwidth}
\newenvironment{condition}[1]
{%
\normalfont
\settowidth{\conditionwidth}{\normalfont#1: }%
\addtolength{\conditionwidth}{2em}%
\begin{description}[
font=\normalfont,align=right,
labelwidth=\conditionwidth,
leftmargin=\conditionwidth,
rightmargin=2em,
labelsep=0pt,
]
\item[\normalfont#1: ]\itshape\ignorespaces
}
{\end{description}}
\begin{document}
We shall often need the following fact, which we shall usually abbreviate
into ``condition~$\mathcal{P}(n_0)$'':
\begin{condition}{$\mathcal P(n_0)$}
If $U=(u_n)_{n\in \mathbb{N}}$, $V=(v_n)_{n\in \mathbb{N}}$ are monotone sequences,
such that there exists an integer $n_0\in\mathbb{N}^*$ and finite subsets
$A_{n_0},B_{n_0}$ of $E$ which verify
\[
\left\{\begin{aligned}
U &\subseteq A_{n_0}\cup T^{n_0}(U, V )\\
V &\subseteq B_{n_0}\cup T^{n_0}(V, U )
\end{aligned}\right.
\]
then $U$ and $V$ are relatively weakly compact.
\end{condition}
Some other text to continue the description.
\end{document}
几点说明。
- 我修复了一些语言错误,特别是逗号的使用;
- 我将两个序列分成两个不同的公式,因为它们之间的逗号是文本而不是数学;
- 而不是
matrix
我所用的aligned
单个对齐点。 - 切勿在 LaTeX 中使用
$$
,并且切勿在数学显示前留空行。
答案2
如果更好的表述意味着更好地对其进行乳化,我建议使用align
而不是其他环境,eqnarray
因为间距和其他原因(例如,据我所知,eqnarray 将被弃用,如果尚未弃用)。
$\mathcal P(n_0)$: If $U=(u_n)_{n\in \mathbb{N}},\:V=(v_n)_{n\in \mathbb{N}}$ are monotone sequences,
such that, there exists an integer $n_0\in\mathbb{N}^*$ and $A_{n_0},B_{n_0}\subseteq E$ finite
sets which verifie:
\begin{align*}
U\subseteq & A_{n_0}\cup T^{n_0}(U, V )\\
V\subseteq & B_{n_0}\cup T^{n_0}(V, U )
\end{align*}
then, $U$ and $V$ are relatively weakly compact.
这里是输出