横向表格与下一页第一列重叠

横向表格与下一页第一列重叠

我是 Latex 的初学者,发现处理表格非常困难(与 MS Word 相比)。所以我需要这里的专家的指导。我正在尝试使用 springer 模板撰写论文(点击此处下载模板)\documentclass[twocolumn]{svjour3}。我喜欢在新页面上以横向模式添加比较表。但是,当我编译它时,表格会移动到下一页,试图占据下一页的第一列,导致所有内容乱码截屏。我尝试使用 \pagebreak[4],但没有任何效果。我给出了我能用我的初学者知识制作的 MWC。任何改动、巧妙的设计都将不胜感激,并附上主要问题的解决方案。

\documentclass[twocolumn]{svjour3}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{comment}
\usepackage[center]{caption}
\usepackage{subcaption}
\usepackage{float}
\usepackage{csquotes}
\usepackage[section]{placeins}
\usepackage{graphicx}
    \usepackage{rotating}
\begin{document}
\begin{sidewaystable}
\caption{Comparison among state of the art designs}
\label{tab:1}       % Give a unique label
\begin{tabular}{p{1in}|p{0.5in}ccp{0.5in}p{0.5in}p{0.8in}p{1.7in}}
\hline\noalign{\smallskip}
\textbf{Reference}&\textbf{Sensors}&\textbf{Dedicated}&\textbf{Number of sensors}&\textbf{Method}&\textbf{Accuracy}&\textbf{Features}&\textbf{Limitations}\\
\hline\noalign{\smallskip}\\

Er and Tan (2018)&Sound sensor, accelerometer&Yes&More than one&Non-ambulatory&~92\%&Fuzzy logic based dual detection capability&Indoor only, no location information, costly and non-portable solution.\\

He et al.(2020)&RFID and Radar&Yes&More than one&Non-ambulatory&~94\%&Increased detection area up to 230\% compared to traditional systems.&Indoor only, no location information, costly and non-portable solution. Implementation requires specialized training.\\

Van Thanh et al.(2018)&Proprietary accelerometer&Yes&One&Wearable sensor&~92\%&Fall as well as post fall posture recognition.&Costly and bulky, no local processing on device, no text based warning SMS.\\

Zhang, Hongtao et al.(2020)&Accelerometer, Gyroscope and Magnetometer&Yes&More than one&Wearable
sensor&~96\%&Fall and post fall posture recognition. Warning SMS with location.&Costly and bulky, no local processing on device, no text based warning SMS.\\

Zurbuchen, N. et al.(2021)&Accelerometer Gyroscope&Yes&More than one&Wearable sensor&~97\%&Multiclass fall and ADL detection.&  High initial cost, separate device, no local processing on device.\\
Yu, Gong, and Kollias (2017)&Camera&Yes&More than one&Image and computer vision&~96\%&Posture based detection ( Laying is treated as fall).&High initial cost, no local processing on device, not suitable for outdoor, privacy issues.\\

Juang et al.(2015)&Camera&Yes&More than one&Image and computer vision&100\%&Human joint identification along with fall.&High initial cost, no local processing on device,low portability, not suitable for outdoor, privacy issues. No local dataset used.\\

Zhang et al.(2020)& Camera& Yes&More than one&Image and computer vision& ~98\%&Fall detection based on body posture, local dataset used.&High initial cost, no local processing on device, not suitable for outdoor.\\

Shu, Francy. et al.(2021)&Camera&Yes&More than one& Image and computer vision&94\%&Multi genre fall detection using eight cameras.&High initial cost,low portability, no local processing on device, not suitable for outdoor, privacy issues.\\

\hline
\end{tabular}
\end{sidewaystable}
\end{document}

请帮忙。

答案1

我建议结合sidewaystable*使用 sidewaystable 和svjour3 从这里

此外,我还使用了包中的水平线booktabstabularx以确保表格充分利用了文本块的宽度,\thead作为makecell列标题。我还引入了一些缩写,并调整了一些列长度,以减少浪费的空白空间。

在此处输入图片描述

\documentclass[twocolumn]{svjour3}
\usepackage[english]{babel}
\usepackage{tabularx}
\usepackage{booktabs}
\usepackage{rotating}
\setlength{\rotFPtop}{0pt plus 1fil}
\usepackage{makecell}
\renewcommand{\theadfont}{\bfseries}
\begin{document}
\begin{sidewaystable*}

\caption{Comparison among state of the art designs}
\label{tab:1}       % Give a unique label
\begin{tabularx}{\linewidth}{>{\raggedright\arraybackslash}p{1in}
                             >{\raggedright\arraybackslash}p{0.75in}
                             c
                             c
                             >{\raggedright\arraybackslash}p{0.75in}
                             c
                             >{\raggedright\arraybackslash}p{1.5in}
                             X}
\toprule
\thead{Reference}&\thead{Sensors}&\thead{Dedic.}&\thead{No. of\\ sensors}&\thead{Method}&\thead{Acc. \\ in \%}&\thead{Features}&\thead{Limitations}\\
\midrule\\

Er and Tan (2018) 
  & Sound sensor, accelerometer
    & Yes & $>1$ & Non-ambulatory & 92 
      & Fuzzy logic based dual detection capability 
        & Indoor only, no location information, costly and non-portable solution.\\
\addlinespace

He et al.(2020) 
  & RFID and Radar 
    & Yes & $>1$ & Non-ambulatory & 94 
      &Increased detection area up to 230\% compared to traditional systems.
        &Indoor only, no location information, costly and non-portable solution. Implementation requires specialized training.\\
\addlinespace

Van Thanh et al.(2018)
  & Proprietary accelerometer
    & Yes & 1 & Wearable sensor & 92 
      &Fall as well as post fall posture recognition. 
        &Costly and bulky, no local processing on device, no text based warning SMS.\\ 
\addlinespace

Zhang, Hongtao et al.(2020)
  &Accelerometer, Gyroscope and Magnetometer
    & Yes & $>1$ & Wearable sensor & 96
      & Fall and post fall posture recognition. Warning SMS with location.
        &Costly and bulky, no local processing on device, no text based warning SMS.\\
\addlinespace

Zurbuchen, N. et al.(2021)
  & Accelerometer Gyroscope 
    & Yes & $>1$ & Wearable sensor & 97
      & Multiclass fall and ADL detection.
        & High initial cost, separate device, no local processing on device.\\
\addlinespace

Yu, Gong, and Kollias (2017)
  & Camera
    & Yes & $>1$ & Image and computer vision & 96
      & Posture based detection (Laying is treated as fall).
        & High initial cost, no local processing on device, not suitable for outdoor, privacy issues.\\
\addlinespace

Juang et al.(2015)
  & Camera
    & Yes & $>1$ & Image and computer vision & 100
      & Human joint identification along with fall.
        & High initial cost, no local processing on device,low portability, not suitable for outdoor, privacy issues. No local dataset used.\\
\addlinespace

Zhang et al.(2020)
  & Camera
    & Yes & $>1$ & Image and computer vision & 98 &
      Fall detection based on body posture, local dataset used.
        & High initial cost, no local processing on device, not suitable for outdoor.\\ 
\addlinespace

Shu, Francy. et al.(2021)
  & Camera
    & Yes & $>1$ & Image and computer vision & 94
      & Multi genre fall detection using eight cameras.
        & High initial cost,low portability, no local processing on device, not suitable for outdoor, privacy issues.\\

\bottomrule
\end{tabularx}
\end{sidewaystable*}
\end{document}

答案2

这可能会让您感到困惑,因为您可能会看到一些标题的改写,例如“准确度会有所帮助”,以及问题下的一些评论。基本上我只是使用\small并调整了一些列宽。

在此处输入图片描述

\documentclass[twocolumn]{article}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{comment}
\usepackage[center]{caption}
\usepackage{subcaption}
\usepackage{float}
\usepackage{csquotes}
\usepackage[section]{placeins}
\usepackage{graphicx,array}
    \usepackage{rotating}
\newcommand\hd[1]{\bfseries\begin{tabular}[t]{@{}c@{}}#1\end{tabular}}
\begin{document}
\begin{sidewaystable*}
\caption{Comparison among state of the art designs}
\label{tab:1=zzz}       % Give a unique label (dont use numbers)
\small
\setlength\tabcolsep{2pt}
\begin{tabular}{
@{}
>{\raggedright}p{1in}
>{\raggedright}p{1in}
cc
>{\raggedright}p{1in}
>{\raggedright}p{.8in}
>{\raggedright}p{1.5in}
>{\raggedright\arraybackslash}p{1.7in}
@{}}
\hline\noalign{\smallskip}
\textbf{Reference}&\textbf{Sensors}&\textbf{Dedicated}&\hd{Number of\\sensors}&\textbf{Method}&\textbf{Accuracy}&\textbf{Features}&\textbf{Limitations}\\
\hline\noalign{\smallskip}\\

Er and Tan (2018)&Sound sensor, accelerometer&Yes&More than one&Non-ambulatory&~92\%&Fuzzy logic based dual detection capability&Indoor only, no location information, costly and non-portable solution.\\

He et al.(2020)&RFID and Radar&Yes&More than one&Non-ambulatory&~94\%&Increased detection area up to 230\% compared to traditional systems.&Indoor only, no location information, costly and non-portable solution. Implementation requires specialized training.\\

Van Thanh et al.(2018)&Proprietary accelerometer&Yes&One&Wearable sensor&~92\%&Fall as well as post fall posture recognition.&Costly and bulky, no local processing on device, no text based warning SMS.\\

Zhang, Hongtao et al.(2020)&Accelerometer, Gyroscope and Magnetometer&Yes&More than one&Wearable
sensor&~96\%&Fall and post fall posture recognition. Warning SMS with location.&Costly and bulky, no local processing on device, no text based warning SMS.\\

Zurbuchen, N. et al.(2021)&Accelerometer Gyroscope&Yes&More than one&Wearable sensor&~97\%&Multiclass fall and ADL detection.&  High initial cost, separate device, no local processing on device.\\
Yu, Gong, and Kollias (2017)&Camera&Yes&More than one&Image and computer vision&~96\%&Posture based detection ( Laying is treated as fall).&High initial cost, no local processing on device, not suitable for outdoor, privacy issues.\\

Juang et al.(2015)&Camera&Yes&More than one&Image and computer vision&100\%&Human joint identification along with fall.&High initial cost, no local processing on device,low portability, not suitable for outdoor, privacy issues. No local dataset used.\\

Zhang et al.(2020)& Camera& Yes&More than one&Image and computer vision& ~98\%&Fall detection based on body posture, local dataset used.&High initial cost, no local processing on device, not suitable for outdoor.\\

Shu, Francy. et al.(2021)&Camera&Yes&More than one& Image and computer vision&94\%&Multi genre fall detection using eight cameras.&High initial cost,low portability, no local processing on device, not suitable for outdoor, privacy issues.\\

\hline
\end{tabular}
\end{sidewaystable*}

\end{document}

我在这里使用文章,因为 svjour 类不在标准分布中,但同样的方法可以适用于任何类。

答案3

使用tabularx表格、makcell列标题、表格规则和附加垂直空间。对于单元格中的文本对齐,使用ragged2e包:

\documentclass[twocolumn]{svjour3}
\usepackage[skip=1ex]{caption}
\usepackage{rotating}
\usepackage{ragged2e}           % <--- new
\usepackage{makecell, tabularx} % <--- new
\renewcommand\theadfont{\small\bfseries}
\renewcommand\theadgape{}
\newcolumntype{L}{>{\RaggedRight}X}
    
\begin{document}
    \begin{sidewaystable}
    \setcellgapes{3pt}
    \makegapedcells
\caption{Comparison among state of the art designs}
\label{tab:1}       % Give a unique label
\begin{tabularx}{\linewidth}{L|L c >{\hsize=0.6\hsize}L 
                                   >{\hsize=0.6\hsize}L  c L 
                                   >{\hsize=1.8\hsize}L }
    \Xhline{1.2pt}
\thead{Reference}   
    & \thead{Sensors}
        & \thead{Dedicated}
            & \thead{Number of\\ sensors}
                & \thead{Method}
                    & \thead{Accuracy}
                        & \thead{Features}
                            & \thead{Limitations}   \\
    \Xhline{0.8pt}
Er and Tan (2018)&Sound sensor, accelerometer&Yes&More than one&Non-ambulatory&~92\%&Fuzzy logic based dual detection capability&Indoor only, no location information, costly and non-portable solution.\\

He et al.(2020)&RFID and Radar&Yes&More than one&Non-ambulatory&~94\%&Increased detection area up to 230\% compared to traditional systems.&Indoor only, no location information, costly and non-portable solution. Implementation requires specialized training.\\

Van Thanh et al.(2018)&Proprietary accelerometer&Yes&One&Wearable sensor&~92\%&Fall as well as post fall posture recognition.&Costly and bulky, no local processing on device, no text based warning SMS.\\

Zhang, Hongtao et al.(2020)&Accelerometer, Gyroscope and Magnetometer&Yes&More than one&Wearable
sensor&~96\%&Fall and post fall posture recognition. Warning SMS with location.&Costly and bulky, no local processing on device, no text based warning SMS.\\

Zurbuchen, N. et al.(2021)&Accelerometer Gyroscope&Yes&More than one&Wearable sensor&~97\%&Multiclass fall and ADL detection.&  High initial cost, separate device, no local processing on device.\\
Yu, Gong, and Kollias (2017)&Camera&Yes&More than one&Image and computer vision&~96\%&Posture based detection ( Laying is treated as fall).&High initial cost, no local processing on device, not suitable for outdoor, privacy issues.\\

Juang et al.(2015)&Camera&Yes&More than one&Image and computer vision&100\%&Human joint identification along with fall.&High initial cost, no local processing on device,low portability, not suitable for outdoor, privacy issues. No local dataset used.\\

Zhang et al.(2020)& Camera& Yes&More than one&Image and computer vision& ~98\%&Fall detection based on body posture, local dataset used.&High initial cost, no local processing on device, not suitable for outdoor.\\

Shu, Francy. et al.(2021)&Camera&Yes&More than one& Image and computer vision&94\%&Multi genre fall detection using eight cameras.&High initial cost,low portability, no local processing on device, not suitable for outdoor, privacy issues.\\
        \Xhline{1.2pt}
\end{tabularx}
\end{sidewaystable}
\end{document}

在此处输入图片描述

相关内容