eqnarray 环境中的分页符

eqnarray 环境中的分页符

我将通过以下方式撰写我的论文:符号列表超过一页。我把它写成

\begin{center}
\begin{eqnarray*}
\mbox{A} & - & \mbox{ Area of fin's surface ($m^2$)}\\
\mbox{h} &-& \mbox{Convection heat transfer coefficient $(W/m^2\, K)$}\\
\mbox{P} & - & \mbox{fins perimeter $(m)$}\\
\mbox{W} & - & \mbox{width of the fin $(m)$}\\
\mbox{U} & - & \mbox{Speed of moving fin $ (m/s)$}\\
\mbox{N} & - & \mbox{Dimensionless convection parameter}\\
\mbox{x} & - & \text{Direction along x-axis $(m)$  }\\
\mbox{X} & - & \mbox{Dimensionless coordinate}\\
\mbox{g} &-& \mbox{Gravitational acceleration $(m/s^{2})$}\\
\mbox{L} & - & \mbox{Fins length $(m)$}\\
\mbox{k} & - & \mbox{Porous fins permeability $(m^2)$}\\
\mbox{q} & - & \mbox{Internal heat generation $(W)$}\\
\mbox{Q} & - & \mbox{ Dimensionless internal heatgeneration parameter}\\
\mbox{T} & - & \mbox{ Temperature}\\
\mbox{$\dot{m}$ } & - & \mbox{Mass flow rate $(kg/s)$}\\
\mbox{$R_{a}$} & - & \text{Rayleigh number $\Big(g\,\beta\,t^3\,(T_{b}-T_{a})/\lambda\,\nu\Big)$  }\\
\mbox{$N_{r}$} & - & \text{Dimensionless convection-conduction number }\\
\mbox{$k_{eff}$} & - & \text{Effective thermal conductivity  $(W/m\,K)$ }\\
\mbox{$k_{f}$} & - & \text{ Air thermal conductivity  $(W/m\,K)$  }\\
\mbox{$k_{s}$} & - & \text{Solid thermal conductivity  $(W/m\,K)$   }\\
\mbox{$k_{r}$} & - & \text{Ratio of thermal conductivity $(k_{eff}/k_{s})$  }\\
\mbox{$T_{a}$} & - & \text{Ambient temperature $(K)$ }\\
\mbox{$T_{b}$} & - & \text{Base temperature  $(K)$ }\\
\mbox{$T_{s}$} & - & \text{ Surface temperature  $(K)$  }\\
\mbox{$S_{g}$} & - & \text{Porosity parameter }\\
\mbox{$C_{p}$} & - & \text{Specific heat of the material $(J/kg K)$ }\\
\mbox{$D_{a}$} & - & \text{Darcy number $(K/t^2)$  }\\
\mbox{$T_{s}$} & - & \text{ Surface temperature  $(K)$  }\\
\mbox{$k_{s}$} & - & \text{Solid thermal conductivity  $(W/m\,K)$   }\\
\mbox{$k_{r}$} & - & \text{Ratio of thermal conductivity $(k_{eff}/k_{s})$  }\\
\Gamma & - & \text{Gamma function}\\
\aleph & - & \text{Normalization function}\\
\alpha &-& \mbox{fin shape paramater}\\
\mbox{\ensuremath{\ell}} & - & \mbox{Fractional order}\\
\oplus & - & \mbox{Fuzzy addition}\\
\ominus & - & \mbox{Fuzzy subtraction}\\
\ominus^{gH} & - & \mbox{Generalized Hukuhara difference}\\
\odot & - & \text{Fuzzy multiplication}\\
\mathcal{L} & - & \mbox{Laplace transform}\\
\tilde{\mathcal{E}} & - & \mbox{Fuzzy function}\\
\tilde{j} & - & \mbox{Fuzzy number}\\
\Gamma & - & \text{Gamma function}\\
\aleph & - & \text{Normalization function}
\end{eqnarray*}
\par\end{center}

我想在多个页面上显示它。我该怎么做?

答案1

你应该绝不使用eqnarray,参见eqnarray 与 align。但即使你喜欢它,在目前的情况下它也是无用的,因为它不能跨页面拆分。原因是eqnarray最终会创建以下结构(就原始命令而言):

$$
\halign to \displaywidth{...}
$$

无论如何,这是牢不可破的。

对于您的应用程序,既然我们知道了eqnarray没什么用,您可以考虑tabular,但这也存在同样的问题。但是,有一个 ,longtable它允许跨页面拆分表格材料。

这里第一列是数学模式,右对齐

>{$}r<{$}<

前面是 ,@{}删除初始填充。后面是\quad--\quad(根据自己的喜好更改分隔符),然后是描述列,左对齐。@{}末尾也是一样,删除填充。

默认情况下,longtables 是水平居中的,但作用于\LTleft它并使其变为零将打印与左边距对齐的表格。

\documentclass{book}
\usepackage{longtable}
\usepackage{array}
\usepackage{siunitx}

\sisetup{per-mode=symbol}

\begin{document}

\chapter*{List of symbols}

\begingroup
\setlength{\LTleft}{0pt}
\begin{longtable}{ @{} >{$}r<{$} @{\quad--\quad} l @{} }
A & Area of fin's surface (\si{\square\meter}) \\
h & Convection heat transfer coefficient (\si{\watt\per\square\meter\per\kelvin}) \\
P & fins perimeter (\si{\meter}) \\
W & width of the fin (\si{\meter}) \\
U & Speed of moving fin (\si{\meter\per\second}) \\
N & Dimensionless convection parameter \\
x & Direction along x-axis (\si{\meter})   \\
X & Dimensionless coordinate \\
g & Gravitational acceleration (\si{\meter\per\square\second}) \\
L & Fins length (\si{\meter}) \\
k & Porous fins permeability (\si{\square\meter}) \\
q & Internal heat generation (\si{\watt}) \\
Q & Dimensionless internal heatgeneration parameter \\
T & Temperature \\
\dot{m} & Mass flow rate (\si{\kilo\gram\per\second}) \\
R_{a} & Rayleigh number $\bigl(g\beta t^3(T_{b}-T_{a})/\lambda\nu\bigr)$   \\
N_{r} & Dimensionless convection-conduction number  \\
k_{\mathrm{eff}} & Effective thermal conductivity  (\si{\watt\per\meter\per\kelvin})  \\
k_{f} & Air thermal conductivity  (\si{\watt\per\meter\per\kelvin})   \\
k_{s} & Solid thermal conductivity  (\si{\watt\per\meter\per\kelvin})    \\
k_{r} & Ratio of thermal conductivity $(k_{\mathrm{eff}}/k_{s})$   \\
T_{a} & Ambient temperature (\si{\kelvin})  \\
T_{b} & Base temperature  (\si{\kelvin})  \\
T_{s} & Surface temperature  (\si{\kelvin})   \\
S_{g} & Porosity parameter  \\
C_{p} & Specific heat of the material (\si{\joule\per\kilo\gram\per\kelvin})  \\
D_{a} & Darcy number ($K/t^2$)   \\
T_{s} & Surface temperature  (\si{\kelvin})   \\
k_{s} & Solid thermal conductivity  (\si{\watt\per\meter\per\kelvin}) \\
k_{r} & Ratio of thermal conductivity $(k_{\mathrm{eff}}/k_{s})$ \\
\Gamma & Gamma function \\
\aleph & Normalization function \\
\alpha & fin shape paramater \\
\ell & Fractional order \\
\oplus & Fuzzy addition \\
\ominus & Fuzzy subtraction \\
\ominus^{\mathit{gH}} & Generalized Hukuhara difference \\
\odot & Fuzzy multiplication \\
\mathcal{L} & Laplace transform \\
\tilde{\mathcal{E}} & Fuzzy function \\
\tilde{j} & Fuzzy number \\
\Gamma & Gamma function \\
\aleph & Normalization function
\end{longtable}
\endgroup

\end{document}

在此处输入图片描述

我已更改所有单位以符合 SI 指南(单位应直立排版)。

相关内容