我将通过以下方式撰写我的论文:符号列表超过一页。我把它写成
\begin{center}
\begin{eqnarray*}
\mbox{A} & - & \mbox{ Area of fin's surface ($m^2$)}\\
\mbox{h} &-& \mbox{Convection heat transfer coefficient $(W/m^2\, K)$}\\
\mbox{P} & - & \mbox{fins perimeter $(m)$}\\
\mbox{W} & - & \mbox{width of the fin $(m)$}\\
\mbox{U} & - & \mbox{Speed of moving fin $ (m/s)$}\\
\mbox{N} & - & \mbox{Dimensionless convection parameter}\\
\mbox{x} & - & \text{Direction along x-axis $(m)$ }\\
\mbox{X} & - & \mbox{Dimensionless coordinate}\\
\mbox{g} &-& \mbox{Gravitational acceleration $(m/s^{2})$}\\
\mbox{L} & - & \mbox{Fins length $(m)$}\\
\mbox{k} & - & \mbox{Porous fins permeability $(m^2)$}\\
\mbox{q} & - & \mbox{Internal heat generation $(W)$}\\
\mbox{Q} & - & \mbox{ Dimensionless internal heatgeneration parameter}\\
\mbox{T} & - & \mbox{ Temperature}\\
\mbox{$\dot{m}$ } & - & \mbox{Mass flow rate $(kg/s)$}\\
\mbox{$R_{a}$} & - & \text{Rayleigh number $\Big(g\,\beta\,t^3\,(T_{b}-T_{a})/\lambda\,\nu\Big)$ }\\
\mbox{$N_{r}$} & - & \text{Dimensionless convection-conduction number }\\
\mbox{$k_{eff}$} & - & \text{Effective thermal conductivity $(W/m\,K)$ }\\
\mbox{$k_{f}$} & - & \text{ Air thermal conductivity $(W/m\,K)$ }\\
\mbox{$k_{s}$} & - & \text{Solid thermal conductivity $(W/m\,K)$ }\\
\mbox{$k_{r}$} & - & \text{Ratio of thermal conductivity $(k_{eff}/k_{s})$ }\\
\mbox{$T_{a}$} & - & \text{Ambient temperature $(K)$ }\\
\mbox{$T_{b}$} & - & \text{Base temperature $(K)$ }\\
\mbox{$T_{s}$} & - & \text{ Surface temperature $(K)$ }\\
\mbox{$S_{g}$} & - & \text{Porosity parameter }\\
\mbox{$C_{p}$} & - & \text{Specific heat of the material $(J/kg K)$ }\\
\mbox{$D_{a}$} & - & \text{Darcy number $(K/t^2)$ }\\
\mbox{$T_{s}$} & - & \text{ Surface temperature $(K)$ }\\
\mbox{$k_{s}$} & - & \text{Solid thermal conductivity $(W/m\,K)$ }\\
\mbox{$k_{r}$} & - & \text{Ratio of thermal conductivity $(k_{eff}/k_{s})$ }\\
\Gamma & - & \text{Gamma function}\\
\aleph & - & \text{Normalization function}\\
\alpha &-& \mbox{fin shape paramater}\\
\mbox{\ensuremath{\ell}} & - & \mbox{Fractional order}\\
\oplus & - & \mbox{Fuzzy addition}\\
\ominus & - & \mbox{Fuzzy subtraction}\\
\ominus^{gH} & - & \mbox{Generalized Hukuhara difference}\\
\odot & - & \text{Fuzzy multiplication}\\
\mathcal{L} & - & \mbox{Laplace transform}\\
\tilde{\mathcal{E}} & - & \mbox{Fuzzy function}\\
\tilde{j} & - & \mbox{Fuzzy number}\\
\Gamma & - & \text{Gamma function}\\
\aleph & - & \text{Normalization function}
\end{eqnarray*}
\par\end{center}
我想在多个页面上显示它。我该怎么做?
答案1
你应该绝不使用eqnarray
,参见eqnarray 与 align。但即使你喜欢它,在目前的情况下它也是无用的,因为它不能跨页面拆分。原因是eqnarray
最终会创建以下结构(就原始命令而言):
$$
\halign to \displaywidth{...}
$$
无论如何,这是牢不可破的。
对于您的应用程序,既然我们知道了eqnarray
没什么用,您可以考虑tabular
,但这也存在同样的问题。但是,有一个 ,longtable
它允许跨页面拆分表格材料。
这里第一列是数学模式,右对齐
>{$}r<{$}<
前面是 ,@{}
删除初始填充。后面是\quad--\quad
(根据自己的喜好更改分隔符),然后是描述列,左对齐。@{}
末尾也是一样,删除填充。
默认情况下,longtable
s 是水平居中的,但作用于\LTleft
它并使其变为零将打印与左边距对齐的表格。
\documentclass{book}
\usepackage{longtable}
\usepackage{array}
\usepackage{siunitx}
\sisetup{per-mode=symbol}
\begin{document}
\chapter*{List of symbols}
\begingroup
\setlength{\LTleft}{0pt}
\begin{longtable}{ @{} >{$}r<{$} @{\quad--\quad} l @{} }
A & Area of fin's surface (\si{\square\meter}) \\
h & Convection heat transfer coefficient (\si{\watt\per\square\meter\per\kelvin}) \\
P & fins perimeter (\si{\meter}) \\
W & width of the fin (\si{\meter}) \\
U & Speed of moving fin (\si{\meter\per\second}) \\
N & Dimensionless convection parameter \\
x & Direction along x-axis (\si{\meter}) \\
X & Dimensionless coordinate \\
g & Gravitational acceleration (\si{\meter\per\square\second}) \\
L & Fins length (\si{\meter}) \\
k & Porous fins permeability (\si{\square\meter}) \\
q & Internal heat generation (\si{\watt}) \\
Q & Dimensionless internal heatgeneration parameter \\
T & Temperature \\
\dot{m} & Mass flow rate (\si{\kilo\gram\per\second}) \\
R_{a} & Rayleigh number $\bigl(g\beta t^3(T_{b}-T_{a})/\lambda\nu\bigr)$ \\
N_{r} & Dimensionless convection-conduction number \\
k_{\mathrm{eff}} & Effective thermal conductivity (\si{\watt\per\meter\per\kelvin}) \\
k_{f} & Air thermal conductivity (\si{\watt\per\meter\per\kelvin}) \\
k_{s} & Solid thermal conductivity (\si{\watt\per\meter\per\kelvin}) \\
k_{r} & Ratio of thermal conductivity $(k_{\mathrm{eff}}/k_{s})$ \\
T_{a} & Ambient temperature (\si{\kelvin}) \\
T_{b} & Base temperature (\si{\kelvin}) \\
T_{s} & Surface temperature (\si{\kelvin}) \\
S_{g} & Porosity parameter \\
C_{p} & Specific heat of the material (\si{\joule\per\kilo\gram\per\kelvin}) \\
D_{a} & Darcy number ($K/t^2$) \\
T_{s} & Surface temperature (\si{\kelvin}) \\
k_{s} & Solid thermal conductivity (\si{\watt\per\meter\per\kelvin}) \\
k_{r} & Ratio of thermal conductivity $(k_{\mathrm{eff}}/k_{s})$ \\
\Gamma & Gamma function \\
\aleph & Normalization function \\
\alpha & fin shape paramater \\
\ell & Fractional order \\
\oplus & Fuzzy addition \\
\ominus & Fuzzy subtraction \\
\ominus^{\mathit{gH}} & Generalized Hukuhara difference \\
\odot & Fuzzy multiplication \\
\mathcal{L} & Laplace transform \\
\tilde{\mathcal{E}} & Fuzzy function \\
\tilde{j} & Fuzzy number \\
\Gamma & Gamma function \\
\aleph & Normalization function
\end{longtable}
\endgroup
\end{document}
我已更改所有单位以符合 SI 指南(单位应直立排版)。