我正在尝试排版一些三角恒等式操作,但当我生成 PDF 时,行被截断了。我不确定如何让它显示在多行上。我确实看过其他类似的帖子,但我搞不懂。
\begin{align*}
2 \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) &= 2\left(\sin\left(\frac{x}{2}\right)\cos\left(\frac{y}{2}\right) + \sin\left(\frac{y}{2}\right)\cos\left(\frac{x}{2}\right)\right)\left(\cos\left(\frac{x}{2}\right)\cos\frac{y}{\
2} + \sin\left(\frac{x}{2}\right)\sin\left(\frac{y}{2}\right)\right)\\
&= 2\biggl(\sin(\frac{x}{2})\cos(\frac{x}{2})\cos^{2}(\frac{y}{2}) + \sin^{2}(\frac{x}{2})\cos(\frac{y}{2})\sin(\frac{y}{2}) + \sin(\frac{y}{2})\cos(\frac{y}{2})\cos^{2}(\frac{x}{2}) \notag \\
&= \sin^{2}(\frac{y}{2})\cos(\frac{x}{2})\sin(\frac{x}{2}\biggr) \notag \\
&= 2\sin(\frac{x}{2})\cos(\frac{x}{2})\cos^{2}(\frac{y}{2}) + 2\sin^{2}(\frac{x}{2})\cos(\frac{y}{2})\sin(\frac{y}{2}) + 2\sin(\frac{y}{2})\cos(\frac{y}{2})\cos^{2}(\frac{x}{2}) \notag \\
&= 2\sin^{2}(\frac{y}{2})\cos(\frac{x}{2})\sin(\frac{x}{2}) \notag \\
&= \sin(x)\cos^{2}(\frac{y}{2}) + \sin(x)\sin^{2}(\frac{y}{2}) + \sin(y)\cos^{2}(\frac{x}{2}) + \sin(y)\sin^{2}(\frac{x}{2}) \\
&= (\sin(x))(\cos^{2}(\frac{y}{2} + \sin^{2}(\frac{y}{2})) + \sin(y)(\cos^{2}(\frac{x}{2} + \sin^{2}(\frac{x}{2}) \\
&= \sin (x)+ \sin (y)
\end{align*}
对此进行编码以避免线路被切断的最佳方法是什么?
答案1
我不会以那种方式呈现身份,坦白地说,我认为这从教学角度来说并不适合。
无论如何,您可以分离第一条线,假装它的宽度很小,然后分割两条较长的线。
\documentclass{article}
\usepackage{amsmath}
\begin{document}
We know the addition and subtraction formulas
\begin{gather*}
\sin(a+b)=\sin a\cos b+\cos a\sin b \\
\sin(a-b)=\sin a\cos b-\cos a\sin b
\end{gather*}
If we sum the two identities, we obtain
\begin{equation*}
\sin(a+b)+\sin(a-b)=2\sin a\cos b
\end{equation*}
If we set $x=a+b$ and $y=a-b$, we have
\begin{equation*}
a=\frac{x+y}{2},\qquad b=\frac{x-y}{2}
\end{equation*}
and we obtain the ``sum-to-product'' formula
\begin{equation*}
\sin x+\sin y=2\sin\frac{x+y}{2}\cos\frac{x-y}{2}
\end{equation*}
Replacing $y$ with $-y$ we get
\begin{equation*}
\sin x-\sin y=2\sin\frac{x-y}{2}\cos\frac{x+y}{2}
\end{equation*}
We can also prove the first sum-to-product formula in
an obnoxiously boring way:
\begin{align*}
\makebox[0pt][l]{$\displaystyle2\sin\frac{x+y}{2}\cos\frac{x-y}{2}$}\qquad&
\\[1ex]
&= 2\left(\sin\frac{x}{2}\cos\frac{y}{2} + \sin\frac{y}{2}\cos\frac{x}{2}\right)
\left(\cos\frac{x}{2}\cos\frac{y}{2} + \sin\frac{x}{2}\sin\frac{y}{2}\right)
\\[1ex]
&= 2\Bigl(\sin\frac{x}{2}\cos\frac{x}{2}\cos^{2}\frac{y}{2} +
\sin^{2}\frac{x}{2}\cos\frac{y}{2}\sin\frac{y}{2}
\\ &\qquad+
\sin\frac{y}{2}\cos\frac{y}{2}\cos^{2}\frac{x}{2} +
\sin^{2}\frac{y}{2}\cos\frac{x}{2}\sin\frac{x}{2}
\Bigr)
\\[1ex]
&= 2\sin\frac{x}{2}\cos\frac{x}{2}\cos^{2}\frac{y}{2} +
2\sin^{2}\frac{x}{2}\cos\frac{y}{2}\sin\frac{y}{2} +
\\ &\qquad+
2\sin\frac{y}{2}\cos\frac{y}{2}\cos^{2}\frac{x}{2} +
2\sin^{2}\frac{y}{2}\cos\frac{x}{2}\sin\frac{x}{2}
\\[1ex]
&= \sin x\cos^{2}\frac{y}{2} + \sin x\sin^{2}\frac{y}{2} +
\sin y\cos^{2}\frac{x}{2} + \sin y\sin^{2}\frac{x}{2}
\\[1ex]
&= \sin x\Bigl(\cos^{2}\frac{y}{2} + \sin^{2}\frac{y}{2}\Bigr) +
\sin y\Bigl(\cos^{2}\frac{x}{2} + \sin^{2}\frac{x}{2}\Bigr)
\\[1ex]
&= \sin x+ \sin y
\end{align*}
\end{document}
答案2
我也不是一个数学家,但是通过变量替换u=x/2
和v=y/2
,推导可以重新表述——我相信更简单——如下。
\documentclass{article} % or some other suitable document class
\usepackage{amsmath} % for align* environment
\begin{document}
Put $u=x/2$ and $v=y/2$. Then
\begin{align*}
\smash[b]{2\sin\Bigl(\frac{x+y}{2}\Bigr) \cos\Bigl(\frac{x-y}{2}\Bigr)}
&= 2\sin(u+v)\cos(u-v)\\
&= 2(\sin u\cos v + \sin v\cos u)(\cos u\cos v + \sin u\sin v)\\
&= 2(\sin u\cos u\cos^2 v + \sin^2 u\cos v\sin v \\
&\qquad + \sin v\cos v\cos^2 u + \sin^2 v\cos u\sin u) \\
&= 2\sin u\cos u\cos^2 v + 2\sin^2 u\cos v\sin v \\
&\qquad + 2\sin v\cos v\cos^2 u + 2\sin^2 v\cos u\sin u \\
&= \sin x\cos^2 v + \sin x\sin^2 v + \sin y\cos^2 u + \sin y\sin^2 u \\
&= \sin x(\cos^2v + \sin^2 v) + \sin y(\cos^2 u + \sin^2 u) \\
&= \sin x+ \sin y\,.
\end{align*}
\end{document}
答案3
我不是数学家,所以我只限于你的推导的 LaTeX 方面。通过使用包\MoveEqLeft
的宏mathtool
,\left...
用 和替换,添加缺失\Bigl..
的括号并用方括号替换外括号:\right...
Biglr...
\documentclass{article}
\usepackage{geometry}
%---------------- show page layout. don't use in a real document!
\usepackage{showframe}
\renewcommand\ShowFrameLinethickness{0.15pt}
\renewcommand*\ShowFrameColor{\color{red}}
%---------------------------------------------------------------%
\usepackage{mathtools}
\begin{document}
\begin{align*}
\MoveEqLeft[3]
2 \sin\Bigl(\frac{x+y}{2}\Bigr) \cos\Bigl(\frac{x-y}{2}\Bigr) \\
& = 2\Bigl[\sin\Bigl(\frac{x}{2}\Bigr)\cos\Bigl(\frac{y}{2}\Bigr) +
\sin\Bigl(\frac{y}{2}\Bigr)\cos\Bigl(\frac{x}{2}\Bigr)\Bigr]
\Bigl[\cos\Bigl(\frac{x}{2}\Bigr)\cos\frac{y}{2} +
\sin\Bigl(\frac{x}{2}\Bigr)\sin\Bigl(\frac{y}{2}\Bigr)\Bigr] \\
& = 2\Bigl[\sin\Bigl(\frac{x}{2}\Bigr)\cos\Bigl(\frac{x}{2}\Bigr)\cos^{2}\Bigl(\frac{y}{2}\Bigr) +
\sin^{2}\Bigl(\frac{x}{2}\Bigr)\cos\Bigl(\frac{y}{2}\Bigr)\sin\Bigl(\frac{y}{2}\Bigr) +
\sin\Bigl(\frac{y}{2}\Bigr)\cos\Bigl(\frac{y}{2}\Bigr)\cos^{2}\Bigl(\frac{x}{2}\Bigr)\Bigr] \\
& = \sin^{2}\Bigl(\frac{y}{2}\Bigr)\cos\Bigl(\frac{x}{2}\Bigr)\sin\Bigl(\frac{x}{2}\Bigr) \\
& = 2\sin\Bigl(\frac{x}{2}\Bigr)\cos\Bigl(\frac{x}{2}\Bigr)\cos^{2}\Bigl(\frac{y}{2}\Bigr) +
2\sin^{2}\Bigl(\frac{x}{2}\Bigr)\cos\Bigl(\frac{y}{2}\Bigr)\sin\Bigl(\frac{y}{2}\Bigr) + 2\sin\Bigl(\frac{y}{2}\Bigr)\cos\Bigl(\frac{y}{2}\Bigr)\cos^{2}\Bigl(\frac{x}{2}\Bigr) \\
& = 2\sin^{2}\Bigl(\frac{y}{2}\Bigr)\cos\Bigl(\frac{x}{2}\Bigr)\sin\Bigl(\frac{x}{2}\Bigr) \\
& = \sin(x)\cos^{2}\Bigl(\frac{y}{2}\Bigr) + \sin(x)\sin^{2}\Bigl(\frac{y}{2}\Bigr) +
\sin(y)\cos^{2}\Bigl(\frac{x}{2}\Bigr) + \sin(y)\sin^{2}\Bigl(\frac{x}{2}\Bigr) \\
& = \sin(x)\Bigl[\cos^{2}\Bigl(\frac{y}{2}\Bigr) + \sin^{2}\Bigl(\frac{y}{2}\Bigr)\Bigr] +
\sin(y)\Bigl[\cos^{2}\Bigl(\frac{x}{2}\Bigr) + \sin^{2}\Bigl(\frac{x}{2}\Bigr)\Bigr] \\
& = \sin(x)+ \sin(y)
\end{align*}
\end{document}
我有
(红线表示文本块边框)
编辑: 但是,您不能省略三角函数参数周围的所有括号:
...
\begin{align*}
\MoveEqLeft[3]
2 \sin\frac{x+y}{2} \cos\frac{x-y}{2} \\
& = 2\Bigl(\sin\frac{x}{2}\cos\frac{y}{2} +
\sin\frac{y}{2}\cos\frac{x}{2}\Bigr)
\Bigl(\cos\frac{x}{2}\cos\frac{y}{2} +
\sin\frac{x}{2}\sin\frac{y}{2}\Bigr) \\
& = 2\Bigl(\sin\frac{x}{2}\cos\frac{x}{2}\cos^{2}\frac{y}{2} +
\sin^{2}\frac{x}{2}\cos\frac{y}{2}\sin\frac{y}{2} +
\sin\frac{y}{2}\cos\frac{y}{2}\cos^{2}\frac{x}{2}\Bigr) \\
& = \sin^{2}\frac{y}{2}\cos\frac{x}{2}\sin\frac{x}{2} \\
& = 2\sin\frac{x}{2}\cos\frac{x}{2}\cos^{2}\frac{y}{2} +
2\sin^{2}\frac{x}{2}\cos\frac{y}{2}\sin\frac{y}{2} + 2\sin\frac{y}{2}\cos\frac{y}{2}\cos^{2}\frac{x}{2} \\
& = 2\sin^{2}\frac{y}{2}\cos\frac{x}{2}\sin\frac{x}{2} \\
& = \sin x\cos^{2}\frac{y}{2} + \sin x\sin^{2}\frac{y}{2} +
\sin y\cos^{2}\frac{x}{2} + \sin y\sin^{2}\frac{x}{2} \\
& = \sin x\Bigl(\cos^{2}\frac{y}{2} + \sin^{2}\frac{y}{2}\Bigr) +
\sin y\Bigl(\cos^{2}\frac{x}{2} + \sin^{2}\frac{x}{2}\Bigr) \\
& = \sin x+ \sin y
\end{align*}
...