增加表大小

增加表大小

我怎样才能放置更全面的表格?表格是垂直的。我希望它占据整个页面高度,以便所有列都有相同的空间并尊重文本。表格太小了。

代码链接:https://www.overleaf.com/read/sdtpsrdymqrj

代码:

\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage{amsmath,amsfonts}
\usepackage{algorithmic}
\usepackage{algorithm}
\usepackage{array}
\usepackage[caption=false,font=normalsize,labelfont=sf,textfont=sf]{subfig}
\usepackage{textcomp}
\usepackage{stfloats}
\usepackage{url}
\usepackage{verbatim}
\usepackage{graphicx}
\usepackage{cite}
\hyphenation{op-tical net-works semi-conduc-tor IEEE-Xplore}
% updated with editorial comments 8/9/2021
%\User defined packages
% highlight
\usepackage{color,soul}
\DeclareRobustCommand{\hlc}[1]{{\sethlcolor{lightgray}\hl{#1}}}
% todonotes
\usepackage{todonotes}
% degree symbol
\usepackage{gensymb}
% tables
\usepackage{caption}
\usepackage{csvsimple}
\usepackage{booktabs, tabularx, wrapfig}
\usepackage{array, ltablex, multirow}
\usepackage{placeins}
\usepackage{graphicx}
%\usepackage{subcaption}
\usepackage{float} % added
\usepackage[nonumberlist,nogroupskip]{glossaries}
%------ tables
\usepackage{adjustbox}
\usepackage{rotating}
\usepackage{makecell}
\usepackage{xcolor}
    \colorlet{bgodd}{black!10}
\usepackage{tabularray}
     \UseTblrLibrary{booktabs}
\usepackage{pdflscape}
%------

\begin{document}


\begin{table}[ht]
    \caption{Test}
    % from makecell
    \settowidth\rotheadsize{\small Monitoring-Based}
    \scriptsize
    \setlength\tabcolsep{0.1mm} % let LaTeX calculate intercolumn whitespace
    \rotatebox{90}{
        \begin{tblr}{
        colspec = {Q[l, wd=5cm] *{3}{X[c]} *{10}{X[c]}},
        vline{2-Y} = {2-Z}{dotted},
        vline{2,5} = {2-Z}{solid, \lightrulewidth},   % \lightrulewidth is defined in booktabs
        rows = {abovesep=2pt, belowsep=2pt},
        row{odd} = {bg=bgodd},
        colsep = 2pt,
        row{1} = {
            font=\bfseries, %\linespread{0.84}\selectfont,
            c, m,
        },
        row{2} = {
              cmd=\rotcell,
            rowsep=0pt
        },
        }
        \toprule
        \SetRow{bg=white}
        Paper(s) &
        \SetCell[c=3]{c, m} {Data\\ Sources} &&&
            \SetCell[c=10]{c, m} Technique &&&&&&&&& \\
        \midrule
        & Log-based
            & Distributed Tracing-based
            & Monitoring-Based
            & {Unsupervised\\ learning}
            & {Supervised\\ learning}
            & Reinforcement learning
            & Semi-supervised learning
            & Hybrid learning
            & {Statistical\\ Approach}
            & Causal Inference
            & {Trace\\ comparison}
            & Heart Beating
            & SLO checks \\
        \midrule
        \cite{liu2020unsupervised, pahl2018all, jin2020anomaly, bogatinovski2020self} &
        &  % Log-based
        \textbullet &   % Distributed Tracing-based
        &   % Monitoring-Based
        \textbullet &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
           % SLO checks 
        \\
        \cite{nedelkoski2019anomaly, gan2019leveraging, zhou2019latent} &
        &  % Log-based
        \textbullet &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        \textbullet &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
         % SLO checks 
        \\
        \cite{wang2020workflow, chen2020framework, meng2021detecting} &
        &  % Log-based
        \textbullet &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        \textbullet &   % Trace comparison
        &   % HeartBeating
         % SLO checks 
        \\
        \cite{li2021microservice} &
        &  % Log-based
        \textbullet &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        \textbullet &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
         % SLO checks 
        \\
        \cite{chow2014mystery} &
        &  % Log-based
        \textbullet &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        \textbullet &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
         % SLO checks 
        \\
        \cite{belhadi2021reinforcement} &
        &  % Log-based
        \textbullet &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        \textbullet &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
         % SLO checks 
        \\
        \cite{sharma2013cloudpd, zhang2016taskinsight, xu2018unsupervised, gulenko2018detecting, mariani2018localizing, wu2020microrca, wu2020performance, wang2018cloudranger, vallis2014novel, su2019robust, huang2013lof, bhaduri2011detecting,wang2012workload, lazarevic2003comparative} &
        &  % Log-based
        &   % Distributed Tracing-based
        \textbullet &   % Monitoring-Based
        \textbullet &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
         % SLO checks 
        \\
        \cite{sauvanaud2018anomaly, liu2015opprentice, du2018anomaly, mariani2020predicting} &
        &  % Log-based
        &   % Distributed Tracing-based
        \textbullet &   % Monitoring-Based
        &   % Unsupervised learning
        \textbullet &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
         % SLO checks 
        \\
        \cite{magalhaes2010detection, peiris2014pad, abdelrahman2016detection, kang2012dapa, yang2007anomaly, wang2013energy, ahad2015toward, nguyen2013fchain, tan2012prepare, gu2009online, samir2019dla} &
        &  % Log-based
        &   % Distributed Tracing-based
        \textbullet &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        \textbullet &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
         % SLO checks 
        \\
        \cite{wu2021causal, chen2014causeinfer, chen2016causeinfer, lin2018microscope} &
        &  % Log-based
        &   % Distributed Tracing-based
        \textbullet &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        \textbullet &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
         % SLO checks 
        \\
        \cite{shan2019diagnosis} &
        &  % Log-based
        &   % Distributed Tracing-based
        \textbullet &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
        \textbullet  % SLO checks 
        \\
        \cite{zang2018fault} &
        &  % Log-based
        &   % Distributed Tracing-based
        \textbullet &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        \textbullet  &   % HeartBeating
        % SLO checks 
        \\
        \cite{yagoub2018equipment, brown2018recurrent, nandi2016anomaly, jia2017logsed, fu2009execution, du2017deeplog} &
        \textbullet &  % Log-based
        &   % Distributed Tracing-based
        &   % Monitoring-Based
        \textbullet &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
        % SLO checks 
        \\
        \cite{fronza2013failure, zhang2016automated, zhang2019robust, liang2007failure} &
        \textbullet &  % Log-based
        &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        \textbullet &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
        % SLO checks 
        \\
        \cite{meng2019loganomaly} &
        \textbullet &  % Log-based
        &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        \textbullet &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
        % SLO checks 
        \\
       \cite{meng2019loganomaly, yang2021semi, li2021microservice} &
        \textbullet &  % Log-based
        &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        \textbullet &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
        % SLO checks 
        \\
        \cite{salfner2007using, beschastnikh2014inferring} &
        \textbullet &  % Log-based
        &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        \textbullet &  % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
        % SLO checks 
        \\
        \cite{he2020loghub} &
        \textbullet &  % Log-based
        &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        \textbullet &   % Hybrid learning
        &  % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
        % SLO checks 
        \\
        \midrule
    \end{tblr}
    }
    {\label{tab:tbl_results}}
\end{table}



\end{document}

谢谢

===== 解决方案 ======

根据@Zarko 的回答,我开发了这个解决方案:

\documentclass{article}
\usepackage{caption}
%------ tables
\usepackage{rotating}
\usepackage{makecell}
\usepackage{xcolor}
    \colorlet{bgodd}{black!10}
\usepackage{tabularray}
     \UseTblrLibrary{booktabs}
%------



\begin{document}

bla bla bla

\clearpage
\newpage

\clearpage
\newpage

\begin{sidewaystable*}[ht]
    
    \centering
    \caption{Papers analyzed in the survey grouped by data sources employed, and techniques used to detect anomalies.}
    %\caption{Papers analyzed in the survey grouped by data sources employed, and techniques used to detect anomalies}
    % from makecell
    \settowidth\rotheadsize{\small Monitoring-Based}
    \footnotesize
    \setlength\tabcolsep{0.1mm} % let LaTeX calculate intercolumn whitespace
    \begin{tblr}{
        width=\textheight-3\baselineskip,  % <--- added
        colspec = {l *{13}{X[c]}},
        vline{2-Y} = {2-Z}{dotted},
        vline{2,5} = {1-Z}{solid, \lightrulewidth}, % \lightrulewidth is defined in booktabs
        colsep = 1pt,                               % <--- changed
        row{1} = {font=\bfseries, c, m},
        row{2} = {cmd=\rotcell},
        row{odd [3-Y]} = {bg=bgodd},                % <--- changed
        }
        \toprule
        \SetRow{bg=white}
        Paper(s) &
        \SetCell[c=3]{c, m} {Data\\ Sources} &&&
            \SetCell[c=10]{c, m} Technique &&&&&&&&& \\
        \midrule
        & Log-based
            & Distributed Tracing-based
            & Monitoring-Based
            & {Unsupervised\\ learning}
            & {Supervised\\ learning}
            & Reinforcement learning
            & Semi-supervised learning
            & Hybrid learning
            & {Statistical\\ Approach}
            & Causal Inference
            & {Trace\\ comparison}
            & Heart Beating
            & SLO checks \\
        \midrule
        \cite{liu2020unsupervised, pahl2018all, jin2020anomaly, bogatinovski2020self} &
        &  % Log-based
        \textbullet &   % Distributed Tracing-based
        &   % Monitoring-Based
        \textbullet &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
           % SLO checks 
        \\
        \cite{nedelkoski2019anomaly, gan2019leveraging, zhou2019latent} &
        &  % Log-based
        \textbullet &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        \textbullet &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
         % SLO checks 
        \\
        \cite{wang2020workflow, chen2020framework, meng2021detecting} &
        &  % Log-based
        \textbullet &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        \textbullet &   % Trace comparison
        &   % HeartBeating
         % SLO checks 
        \\
        \cite{li2021microservice} &
        &  % Log-based
        \textbullet &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        \textbullet &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
         % SLO checks 
        \\
        \cite{chow2014mystery} &
        &  % Log-based
        \textbullet &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        \textbullet &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
         % SLO checks 
        \\
        \cite{belhadi2021reinforcement} &
        &  % Log-based
        \textbullet &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        \textbullet &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
         % SLO checks 
        \\
        \cite{sharma2013cloudpd, zhang2016taskinsight, xu2018unsupervised, gulenko2018detecting, mariani2018localizing, wu2020microrca, wu2020performance, wang2018cloudranger, vallis2014novel, su2019robust, huang2013lof, bhaduri2011detecting,wang2012workload, lazarevic2003comparative} &
        &  % Log-based
        &   % Distributed Tracing-based
        \textbullet &   % Monitoring-Based
        \textbullet &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
         % SLO checks 
        \\
        \cite{sauvanaud2018anomaly, liu2015opprentice, du2018anomaly, mariani2020predicting} &
        &  % Log-based
        &   % Distributed Tracing-based
        \textbullet &   % Monitoring-Based
        &   % Unsupervised learning
        \textbullet &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
         % SLO checks 
        \\
        \cite{magalhaes2010detection, peiris2014pad, abdelrahman2016detection, kang2012dapa, yang2007anomaly, wang2013energy, ahad2015toward, nguyen2013fchain, tan2012prepare, gu2009online, samir2019dla} &
        &  % Log-based
        &   % Distributed Tracing-based
        \textbullet &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        \textbullet &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
         % SLO checks 
        \\
        \cite{wu2021causal, chen2014causeinfer, chen2016causeinfer, lin2018microscope} &
        &  % Log-based
        &   % Distributed Tracing-based
        \textbullet &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        \textbullet &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
         % SLO checks 
        \\
        \cite{shan2019diagnosis} &
        &  % Log-based
        &   % Distributed Tracing-based
        \textbullet &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
        \textbullet  % SLO checks 
        \\
        \cite{zang2018fault} &
        &  % Log-based
        &   % Distributed Tracing-based
        \textbullet &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        \textbullet  &   % HeartBeating
        % SLO checks 
        \\
        \cite{yagoub2018equipment, brown2018recurrent, nandi2016anomaly, jia2017logsed, fu2009execution, du2017deeplog} &
        \textbullet &  % Log-based
        &   % Distributed Tracing-based
        &   % Monitoring-Based
        \textbullet &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
        % SLO checks 
        \\
        \cite{fronza2013failure, zhang2016automated, zhang2019robust, liang2007failure} &
        \textbullet &  % Log-based
        &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        \textbullet &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
        % SLO checks 
        \\
        \cite{meng2019loganomaly} &
        \textbullet &  % Log-based
        &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        \textbullet &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
        % SLO checks 
        \\
       \cite{meng2019loganomaly, yang2021semi, li2021microservice} &
        \textbullet &  % Log-based
        &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        \textbullet &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
        % SLO checks 
        \\
        \cite{salfner2007using, beschastnikh2014inferring} &
        \textbullet &  % Log-based
        &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        \textbullet &  % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
        % SLO checks 
        \\
        \cite{he2020loghub} &
        \textbullet &  % Log-based
        &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        \textbullet &   % Hybrid learning
        &  % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
        % SLO checks 
        \\
        \midrule
    \end{tblr}  
    {\label{tab:tbl_results}}
\end{sidewaystable*}

\clearpage
\newpage

bla bla

\end{document}

答案1

像这样吗?

在此处输入图片描述

  • 表格放在横向页面中,因此表格的宽度等于\textheight
  • 在这种情况下,表格标题与表格对齐,我认为标题的正确位置是什么

梅威瑟:

\documentclass{article}
\usepackage{caption}
%------ tables
\usepackage{rotating}
\usepackage{makecell}
\usepackage{xcolor}
    \colorlet{bgodd}{black!10}
\usepackage{tabularray}
     \UseTblrLibrary{booktabs}
\usepackage{pdflscape}
%------

\begin{document}
\begin{landscape}
    \begin{table}[ht]
\caption{Test}
\label{tab:tbl_results}
\settowidth\rotheadsize{\small Monitoring-Based}    % from makecell
    \begin{tblr}{
        colspec = {l *{13}{X[c]}},
        vline{2-Y} = {2-Z}{dotted},
        vline{2,5} = {1-Z}{solid, \lightrulewidth},  % \lightrulewidth is defined in booktabs
        colsep = 2pt,
        row{1} = {font=\bfseries, c, m},
        row{2} = {cmd=\rotcell},
        row{odd [3-Y]} = {bg=bgodd},                 % <--- changed
       \toprule
        Paper(s) &
        \SetCell[c=3]{c, m} {Data\\ Sources} &&&
            \SetCell[c=10]{c, m} Technique &&&&&&&&& \\
        \midrule
        & Log-based
            & Distributed Tracing-based
            & Monitoring-Based
            & {Unsupervised\\ learning}
            & {Supervised\\ learning}
            & Reinforcement learning
            & Semi-supervised learning
            & Hybrid learning
            & {Statistical\\ Approach}
            & Causal Inference
            & {Trace\\ comparison}
            & Heart Beating
            & SLO checks \\
        \midrule
        \cite{liu2020unsupervised, pahl2018all, jin2020anomaly, bogatinovski2020self} &
        &  % Log-based
        \textbullet &   % Distributed Tracing-based
        &   % Monitoring-Based
        \textbullet &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
           % SLO checks
        \\
        \cite{nedelkoski2019anomaly, gan2019leveraging, zhou2019latent} &
        &  % Log-based
        \textbullet &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        \textbullet &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
         % SLO checks
        \\
        \cite{wang2020workflow, chen2020framework, meng2021detecting} &
        &  % Log-based
        \textbullet &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        \textbullet &   % Trace comparison
        &   % HeartBeating
         % SLO checks
        \\
        \cite{li2021microservice} &
        &  % Log-based
        \textbullet &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        \textbullet &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
         % SLO checks
        \\
        \cite{chow2014mystery} &
        &  % Log-based
        \textbullet &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        \textbullet &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
         % SLO checks
        \\
        \cite{belhadi2021reinforcement} &
        &  % Log-based
        \textbullet &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        \textbullet &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
         % SLO checks
        \\
        \cite{sharma2013cloudpd, zhang2016taskinsight, xu2018unsupervised, gulenko2018detecting, mariani2018localizing, wu2020microrca, wu2020performance, wang2018cloudranger, vallis2014novel, su2019robust, huang2013lof, bhaduri2011detecting,wang2012workload, lazarevic2003comparative} &
        &  % Log-based
        &   % Distributed Tracing-based
        \textbullet &   % Monitoring-Based
        \textbullet &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
         % SLO checks
        \\
        \cite{sauvanaud2018anomaly, liu2015opprentice, du2018anomaly, mariani2020predicting} &
        &  % Log-based
        &   % Distributed Tracing-based
        \textbullet &   % Monitoring-Based
        &   % Unsupervised learning
        \textbullet &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
         % SLO checks
        \\
        \cite{magalhaes2010detection, peiris2014pad, abdelrahman2016detection, kang2012dapa, yang2007anomaly, wang2013energy, ahad2015toward, nguyen2013fchain, tan2012prepare, gu2009online, samir2019dla} &
        &  % Log-based
        &   % Distributed Tracing-based
        \textbullet &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        \textbullet &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
         % SLO checks
        \\
        \cite{wu2021causal, chen2014causeinfer, chen2016causeinfer, lin2018microscope} &
        &  % Log-based
        &   % Distributed Tracing-based
        \textbullet &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        \textbullet &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
         % SLO checks
        \\
        \cite{shan2019diagnosis} &
        &  % Log-based
        &   % Distributed Tracing-based
        \textbullet &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
        \textbullet  % SLO checks
        \\
        \cite{zang2018fault} &
        &  % Log-based
        &   % Distributed Tracing-based
        \textbullet &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        \textbullet  &   % HeartBeating
        % SLO checks
        \\
        \cite{yagoub2018equipment, brown2018recurrent, nandi2016anomaly, jia2017logsed, fu2009execution, du2017deeplog} &
        \textbullet &  % Log-based
        &   % Distributed Tracing-based
        &   % Monitoring-Based
        \textbullet &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
        % SLO checks
        \\
        \cite{fronza2013failure, zhang2016automated, zhang2019robust, liang2007failure} &
        \textbullet &  % Log-based
        &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        \textbullet &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
        % SLO checks
        \\
        \cite{meng2019loganomaly} &
        \textbullet &  % Log-based
        &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        \textbullet &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
        % SLO checks
        \\
       \cite{meng2019loganomaly, yang2021semi, li2021microservice} &
        \textbullet &  % Log-based
        &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        \textbullet &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
        % SLO checks
        \\
        \cite{salfner2007using, beschastnikh2014inferring} &
        \textbullet &  % Log-based
        &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        \textbullet &  % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
        % SLO checks
        \\
        \cite{he2020loghub} &
        \textbullet &  % Log-based
        &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        \textbullet &   % Hybrid learning
        &  % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
        % SLO checks
        \\
        \bottomrule
    \end{tblr}
    \end{table}
\end{landscape}
\end{document}

附录(1):

  • 如果你喜欢只旋转表格并将其标题留在页面顶部,则应该定义表格的宽度
  • 在这种情况下,它是关于\textwidth- 标题空间(参见下面的 MWE):
\documentclass{article}
\usepackage{caption}
%------ tables
\usepackage{rotating}
\usepackage{makecell}
\usepackage{xcolor}
    \colorlet{bgodd}{black!10}
\usepackage{tabularray}
     \UseTblrLibrary{booktabs}
%------

\begin{document}
    \begin{table}[ht]
\caption{Test}
\label{tab:tbl_results}
\settowidth\rotheadsize{\small Monitoring-Based}    % from makecell
 \rotatebox{90}{
    \begin{tblr}{width=\textheight-3\baselineskip,  % <--- added
        colspec = {l *{13}{X[c]}},
        vline{2-Y} = {2-Z}{dotted},
        vline{2,5} = {1-Z}{solid, \lightrulewidth}, % \lightrulewidth is defined in booktabs
        colsep = 1pt,                               % <--- changed
        row{1} = {font=\bfseries, c, m},
        row{2} = {cmd=\rotcell},
        row{odd [3-Y]} = {bg=bgodd},                % <--- changed
                }
        \toprule
Paper(s) &  \SetCell[c=3]{c} {Data\\ Sources} 
            &&& \SetCell[c=10]{c, m} Technique 
                &&&&&&&&&       \\
        \midrule
        & Log-based
            & Distributed Tracing-based
            & Monitoring-Based
            & {Unsupervised\\ learning}
            & {Supervised\\ learning}
            & Reinforcement learning
            & Semi-supervised learning
            & Hybrid learning
            & {Statistical\\ Approach}
            & Causal Inference
            & {Trace\\ comparison}
            & Heart Beating
            & SLO checks \\
        \midrule
        \cite{liu2020unsupervised, pahl2018all, jin2020anomaly, bogatinovski2020self} &
        &  % Log-based
        \textbullet &   % Distributed Tracing-based
        &   % Monitoring-Based
        \textbullet &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
           % SLO checks
        \\
        \cite{nedelkoski2019anomaly, gan2019leveraging, zhou2019latent} &
        &  % Log-based
        \textbullet &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        \textbullet &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
         % SLO checks
        \\
        \cite{wang2020workflow, chen2020framework, meng2021detecting} &
        &  % Log-based
        \textbullet &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        \textbullet &   % Trace comparison
        &   % HeartBeating
         % SLO checks
        \\
        \cite{li2021microservice} &
        &  % Log-based
        \textbullet &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        \textbullet &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
         % SLO checks
        \\
        \cite{chow2014mystery} &
        &  % Log-based
        \textbullet &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        \textbullet &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
         % SLO checks
        \\
        \cite{belhadi2021reinforcement} &
        &  % Log-based
        \textbullet &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        \textbullet &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
         % SLO checks
        \\
        \cite{sharma2013cloudpd, zhang2016taskinsight, xu2018unsupervised, gulenko2018detecting, mariani2018localizing, wu2020microrca, wu2020performance, wang2018cloudranger, vallis2014novel, su2019robust, huang2013lof, bhaduri2011detecting,wang2012workload, lazarevic2003comparative} &
        &  % Log-based
        &   % Distributed Tracing-based
        \textbullet &   % Monitoring-Based
        \textbullet &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
         % SLO checks
        \\
        \cite{sauvanaud2018anomaly, liu2015opprentice, du2018anomaly, mariani2020predicting} &
        &  % Log-based
        &   % Distributed Tracing-based
        \textbullet &   % Monitoring-Based
        &   % Unsupervised learning
        \textbullet &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
         % SLO checks
        \\
        \cite{magalhaes2010detection, peiris2014pad, abdelrahman2016detection, kang2012dapa, yang2007anomaly, wang2013energy, ahad2015toward, nguyen2013fchain, tan2012prepare, gu2009online, samir2019dla} &
        &  % Log-based
        &   % Distributed Tracing-based
        \textbullet &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        \textbullet &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
         % SLO checks
        \\
        \cite{wu2021causal, chen2014causeinfer, chen2016causeinfer, lin2018microscope} &
        &  % Log-based
        &   % Distributed Tracing-based
        \textbullet &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        \textbullet &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
         % SLO checks
        \\
        \cite{shan2019diagnosis} &
        &  % Log-based
        &   % Distributed Tracing-based
        \textbullet &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
        \textbullet  % SLO checks
        \\
        \cite{zang2018fault} &
        &  % Log-based
        &   % Distributed Tracing-based
        \textbullet &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        \textbullet  &   % HeartBeating
        % SLO checks
        \\
        \cite{yagoub2018equipment, brown2018recurrent, nandi2016anomaly, jia2017logsed, fu2009execution, du2017deeplog} &
        \textbullet &  % Log-based
        &   % Distributed Tracing-based
        &   % Monitoring-Based
        \textbullet &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
        % SLO checks
        \\
        \cite{fronza2013failure, zhang2016automated, zhang2019robust, liang2007failure} &
        \textbullet &  % Log-based
        &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        \textbullet &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
        % SLO checks
        \\
        \cite{meng2019loganomaly} &
        \textbullet &  % Log-based
        &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        \textbullet &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
        % SLO checks
        \\
       \cite{meng2019loganomaly, yang2021semi, li2021microservice} &
        \textbullet &  % Log-based
        &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        \textbullet &   % Semi-supervised learning
        &   % Hybrid learning
        &   % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
        % SLO checks
        \\
        \cite{salfner2007using, beschastnikh2014inferring} &
        \textbullet &  % Log-based
        &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        &   % Hybrid learning
        \textbullet &  % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
        % SLO checks
        \\
        \cite{he2020loghub} &
        \textbullet &  % Log-based
        &   % Distributed Tracing-based
        &   % Monitoring-Based
        &   % Unsupervised learning
        &   % Supervised learning
        &   % Reinforcement learning
        &   % Semi-supervised learning
        \textbullet &   % Hybrid learning
        &  % Statistical Approach
        &   % Causal Inference
        &   % Trace comparison
        &   % HeartBeating
        % SLO checks
        \\
        \bottomrule
    \end{tblr}
}
    \end{table}
\end{document}

在此处输入图片描述

附录(2):

  • 为了讲究,第二个解决方案也改变了表格的方向
  • 对于真正纵向的表格,它不应该是定向的,而应该减少第一列的宽度,也许还应该减少其他列中文本的行距。例如,正如在下一个 MWE 中所做的那样:
\documentclass{article}
\usepackage{caption}
%------ tables
\usepackage{rotating}
\usepackage{makecell}
\usepackage{xcolor}
    \colorlet{bgodd}{black!10}
\usepackage{tabularray}
     \UseTblrLibrary{booktabs}
%------

\begin{document}
    \begin{table}[ht]
\caption{Test}
\label{tab:tbl_results}
\small
\settowidth\rotheadsize{Monitoring-Based}    % from makecell
    \begin{tblr}{
        colspec = {X[2,l,m] *{13}{X[c, font=\linespread{0.84}\selectfont]}},
        vline{2-Y} = {2-Z}{dotted},
        vline{2,5} = {1-Z}{solid, \lightrulewidth}, % \lightrulewidth is defined in booktabs
        colsep = 1pt,                               % <--- changed
        row{1} = {font=\bfseries, c, m},
        row{2} = {cmd=\rotcell},
        row{odd [3-Y]} = {bg=bgodd},                % <--- changed
                }
%%% table body is the same as at previous examples
        \bottomrule
    \end{tblr}
    \end{table}
\end{document}

在此处输入图片描述

相关内容