有人能告诉我如何调整表格内容,以便最后一列正确显示吗?这是针对文档类论文的。您可以找到这里
此 cls 的 MWE 如下所示。
\documentclass[12pt,a4paper, oneside, openright]{Thesis}
\usepackage{lmodern,babel,adjustbox,booktabs,multirow}
\usepackage{makecell}
\usepackage{tabularx}
\begin{document}
\section{Summary of literature}
\begin{table}
\footnotesize
\begin{tabularx}{\columnwidth}{llll}
\toprule
References & Databases & Deep Learning Approach & Recognition Accuracy \\
\midrule
T.Tuncer \cite{tuncer2021automated} &RAVDESS,EmoDB,SAVEE&Q-Wavelet Transform&87.43\%.90.09\%,79.08\%\\
M.Mastaqeem \cite{sajjad2020clustering}&IEMOCAP,RAVDESS,EmoDB&Deep BiLSTM&72.25\%,85.57\%,77.02\%\\
T.Anvarjon \cite{anvarjon2020deep}&IEMOCAP,EmoDB&Spectrogram based CNN&77.01\%,92.02\%\\
S.Zhong \cite{zhong2020exploration}&IEMOCAP,EmoDB,CASIA&Fused feature&74.88\%,83.33\%,98.12\%\\
S.Latif \cite{latif2020multi}&IEMOCAP&Multi-tasking with gender and speaker recognition&68.5\%\\
\bottomrule
\end{tabularx}
\end{table}
\end{document}
有没有办法自动调整 col 文本?我试过了p{\width}
,但在这里不起作用。使用 X 代替 l 后编辑的结果是
问候
答案1
您的表中至少有两个问题:
tabularx
表必须至少有一个列属于X
其派生类型- 文本中用逗号分隔的单词在逗号后应有空格。
\documentclass[12pt,a4paper, oneside, openright]{Thesis}
\usepackage{babel}
\usepackage{lmodern}
\usepackage{siunitx}
\usepackage{adjustbox}
\usepackage{booktabs,makecell, multirow, tabularx}
\newcolumntype{L}{>{\raggedright\arraybackslash}X}
\begin{document}
\section{Summary of literature}
\begin{table}[ht] %
\caption{Summary of Literature}
\footnotesize
\setlength\tabcolsep{4pt}
\begin{tabularx}{\columnwidth}{@{} lLLL @{}}
\toprule
References
& Databases
& \makecell{Deep Learning\\ Approach}
& \makecell{Recognition\\ Accuracy} \\
\midrule
T.Tuncer \cite{tuncer2021automated}
& RAVDESS, EmoDB, SAVEE
& Q-Wavelet Transform
& \qty{87.43}{\%}. \qty{90.09}{\%}, \qty{79.08}{\%} \\
\addlinespace
M.Mastaqeem \cite{sajjad2020clustering}
& IEMOCAP, RAVDESS, EmoDB
& Deep BiLSTM
& \qty{72.25}{\%}, \qty{85.57}{\%}, \qty{77.02}{\%} \\
\addlinespace
T.Anvarjon \cite{anvarjon2020deep}
& IEMOCAP, EmoDB
& Spectrogram based CNN
& \qty{77.01}{\%}, \qty{92.02}{\%} \\
\addlinespace
S.Zhong \cite{zhong2020exploration}
& IEMOCAP, EmoDB, CASIA
& Fused feature
& \qty{74.88}{\%}, \qty{83.33}{\%}, \qty{98.12}{\%} \\
\addlinespace
S.Latif \cite{latif2020multi}
& IEMOCAP
& Multi-tasking with gender and speaker recognition
& \qty{68.5}{\%} \\
\bottomrule
\end{tabularx}
\end{table}
\end{document}
无关:
- 表中的数量(百分比)是使用
siunitx
包装。 - 添加了表格放置选项
[ht]
,因此表格不会被推到章节标题之前。
附录:
如果您更喜欢使用tabularray
包,这里有一个替代解决方案,使用tblr
包tabularray
和表格字体大小˙\small`。
\documentclass[12pt,a4paper,oneside,openright]{Thesis}
\usepackage{xcolor}
\usepackage{tabularray}
\UseTblrLibrary{booktabs, siunitx}
\begin{document}
\section{Summary of literature}
\begin{table}[ht]
\centering
\caption{Summary of Literature}
\begin{tblr}{colspec = {@{} l X[l] X[1.1, l] X[l] @{}},
row{1} = {c, m},
rows = {font=\small\linespread{0.9}\selectfont}
}
\toprule
References
& Databases
& Deep Learning Approach
& {Recognition Accuracy} \\
\midrule
T.Tuncer \cite{tuncer2021automated}
& RAVDESS, EmoDB, SAVEE
& Q-Wavelet Transform
& \qty{87.43}{\%}. \qty{90.09}{\%}, \qty{79.08}{\%} \\
M.Mastaqeem \cite{sajjad2020clustering}
& IEMOCAP, RAVDESS, EmoDB
& Deep BiLSTM
& \qty{72.25}{\%}, \qty{85.57}{\%}, \qty{77.02}{\%} \\
T.Anvarjon \cite{anvarjon2020deep}
& IEMOCAP, EmoDB
& Spectrogram based CNN
& \qty{77.01}{\%}, \qty{92.02}{\%} \\
S.Zhong \cite{zhong2020exploration}
& IEMOCAP, EmoDB, CASIA
& Fused feature
& \qty{74.88}{\%}, \qty{83.33}{\%}, \qty{98.12}{\%} \\
S.Latif \cite{latif2020multi}
& IEMOCAP
& Multi-tasking with gender and speaker recognition
& \qty{68.5}{\%} \\
\bottomrule
\end{tblr}
\end{table}
\bibliographystyle{plain}
\bibliography{reference}
\end{document}
答案2
长桌
\documentclass[12pt,a4paper,oneside,openright]{Thesis}
\usepackage{xcolor}
\usepackage{tabularray}
\begin{document}
\section{Summary of literature}
\begin{tblr}
[
long,
caption = {Summary of Literature},
label = {tblr:test},
]
{
rowhead = 1,
colspec = {Q[c,m]Q[c,m]Q[c,m]Q[c,m]},
hline{1,Z} = {.08em},
hline{2} = {.05em},
rows = {font=\footnotesize},
row{even[2-Z]} = {gray9!40}
}
References & Databases & Deep Learning Approach & {Recognition\\Accuracy} \\
T.Tuncer \cite{tuncer2021automated} & {RAVDESS\\EmoDB\\SAVEE} & Q-Wavelet Transform & {87.43\%\\90.09\%\\79.08\%} \\
M.Mastaqeem \cite{sajjad2020clustering} & {IEMOCAP\\RAVDESS\\EmoDB} & Deep BiLSTM & {72.25\%\\85.57\%\\77.02\%} \\
T.Anvarjon \cite{anvarjon2020deep} & {IEMOCAP\\EmoDB} & Spectrogram based CNN & {77.01\%\\92.02\%} \\
S.Zhong \cite{zhong2020exploration} & {IEMOCAP\\EmoDB\\CASIA} & Fused feature & {74.88\%\\83.33\%\\98.12\%} \\
S.Latif \cite{latif2020multi} & IEMOCAP & {Multi-tasking with gender\\and speaker recognition} & 68.50\% \\
T.Tuncer \cite{tuncer2021automated} & {RAVDESS\\EmoDB\\SAVEE} & Q-Wavelet Transform & {87.43\%\\90.09\%\\79.08\%} \\
M.Mastaqeem \cite{sajjad2020clustering} & {IEMOCAP\\RAVDESS\\EmoDB} & Deep BiLSTM & {72.25\%\\85.57\%\\77.02\%} \\
T.Anvarjon \cite{anvarjon2020deep} & {IEMOCAP\\EmoDB} & Spectrogram based CNN & {77.01\%\\92.02\%} \\
S.Zhong \cite{zhong2020exploration} & {IEMOCAP\\EmoDB\\CASIA} & Fused feature & {74.88\%\\83.33\%\\98.12\%} \\
S.Latif \cite{latif2020multi} & IEMOCAP & {Multi-tasking with gender\\and speaker recognition} & 68.50\% \\
T.Tuncer \cite{tuncer2021automated} & {RAVDESS\\EmoDB\\SAVEE} & Q-Wavelet Transform & {87.43\%\\90.09\%\\79.08\%} \\
M.Mastaqeem \cite{sajjad2020clustering} & {IEMOCAP\\RAVDESS\\EmoDB} & Deep BiLSTM & {72.25\%\\85.57\%\\77.02\%} \\
T.Anvarjon \cite{anvarjon2020deep} & {IEMOCAP\\EmoDB} & Spectrogram based CNN & {77.01\%\\92.02\%} \\
S.Zhong \cite{zhong2020exploration} & {IEMOCAP\\EmoDB\\CASIA} & Fused feature & {74.88\%\\83.33\%\\98.12\%} \\
S.Latif \cite{latif2020multi} & IEMOCAP & {Multi-tasking with gender\\and speaker recognition} & 68.50\% \\
T.Tuncer \cite{tuncer2021automated} & {RAVDESS\\EmoDB\\SAVEE} & Q-Wavelet Transform & {87.43\%\\90.09\%\\79.08\%} \\
M.Mastaqeem \cite{sajjad2020clustering} & {IEMOCAP\\RAVDESS\\EmoDB} & Deep BiLSTM & {72.25\%\\85.57\%\\77.02\%} \\
T.Anvarjon \cite{anvarjon2020deep} & {IEMOCAP\\EmoDB} & Spectrogram based CNN & {77.01\%\\92.02\%} \\
S.Zhong \cite{zhong2020exploration} & {IEMOCAP\\EmoDB\\CASIA} & Fused feature & {74.88\%\\83.33\%\\98.12\%} \\
S.Latif \cite{latif2020multi} & IEMOCAP & {Multi-tasking with gender\\and speaker recognition} & 68.50\% \\
\end{tblr}
\bibliographystyle{plain}
\bibliography{reference}
\end{document}
桌上浮标
\documentclass[12pt,a4paper,oneside,openright]{Thesis}
\usepackage{xcolor}
\usepackage{tabularray}
\begin{document}
\section{Summary of literature}
\begin{table}
\centering
\caption{Summary of Literature}
\begin{tblr}
{
colspec = {Q[c,m]Q[c,m]Q[c,m]Q[c,m]},
hline{1,Z} = {.08em},
hline{2} = {.05em},
rows = {font=\footnotesize},
row{even[2-Z]} = {gray9!40}
}
References & Databases & Deep Learning Approach & {Recognition\\Accuracy} \\
T.Tuncer \cite{tuncer2021automated} & {RAVDESS\\EmoDB\\SAVEE} & Q-Wavelet Transform & {87.43\%\\90.09\%\\79.08\%} \\
M.Mastaqeem \cite{sajjad2020clustering} & {IEMOCAP\\RAVDESS\\EmoDB} & Deep BiLSTM & {72.25\%\\85.57\%\\77.02\%} \\
T.Anvarjon \cite{anvarjon2020deep} & {IEMOCAP\\EmoDB} & Spectrogram based CNN & {77.01\%\\92.02\%} \\
S.Zhong \cite{zhong2020exploration} & {IEMOCAP\\EmoDB\\CASIA} & Fused feature & {74.88\%\\83.33\%\\98.12\%} \\
S.Latif \cite{latif2020multi} & IEMOCAP & {Multi-tasking with gender\\and speaker recognition} & 68.50\% \\
\end{tblr}
\end{table}
\bibliographystyle{plain}
\bibliography{reference}
\end{document}