我有这个很长的代码。
\documentclass[12pt,a4paper]{article}
\usepackage[utf8]{inputenc}
\usepackage[
left=1in,
right=1in,
top=1.5in,
bottom=1in,
headsep=20pt
]{geometry}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amsthm}
\usepackage{enumitem}
\usepackage{mathrsfs}
\newtheorem{theorem}{Theorem}
\theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition}
\DeclareMathOperator{\im}{Im\,}
\DeclareMathOperator{\rad}{rad}
\DeclareMathOperator{\s}{\oplus}
\DeclareMathOperator{\summand}{\subseteq^{\oplus}}
\begin{document}
\flushbottom
\begin{definition}
Let $M$ be a right $R$-module, a submodule $A\subset M$ is called \textit{small}
(written $A \ll M$) if there is no proper submodule $B\subset M$ with $A+B=M$.
Equivalently, whenever $A+B=M$ then $B=M$. The radical of $M$, denoted $\rad(M)$, is
defined to be the sum of small submodules of $M$.
\end{definition}
\smallskip
\begin{theorem}[\textsc{Properties Of Small Submodules And The Radical}]
Let $M$ and $N$ be any right modules, and $f:M\to N$ any homomorphism.
\begin{enumerate}[nolistsep]
\item[(1)] If $A\ll M$, then $f(A) \ll f(N)$.
\item[(2)] If $A \ll X$ and $X \leq M$, then $A \ll M$.
\item[(3)] $f\bigl( \rad(M)\bigr) \subseteq \rad(N)$.
\item[(4)] $\rad(X)\subseteq \rad(M)$ for every submodule $X \leq M$.
\item[(5)] If $M= \bigoplus_{i\in I}M_i$, then $\rad(M)=\bigoplus_{i\in I}\rad(M_i)$.
\item[(6)] If $M$ is semisimple, then $\rad(M)=0$. In particular, if $R$ is
semisimple
then $\rad(M_R)=0$.
\item[(7)] $\rad(M)=\bigcap \left\lbrace E : E < M \text{ maximal} \right\rbrace$.
\item[(8)] If $A \summand M$, then $\rad(A)=A\cap \rad(M)$.
\item[(9)] $\rad\bigl(M/\rad(M) \bigr)=0$.
\item[(10)] $\rad(M)=\bigcap \left\lbrace B \subseteq M : (M/B)_R \text{ semisimple}
\right\rbrace$.
\item[(11)] $J(R)= \bigcap \bigl\lbrace \mathcal{R}(S_R) : S_R \text{ simple}
\bigr\rbrace$, where $\mathcal{R}(S_R)$ stands for the right annihilator of $S_R$. In
particular, $J(R)$ is a two-sided ideal of $R$.
\item[(12)] $M J(R) \subseteq \rad(M)$. The equality holds if $M$ is projective.
\item[(13)] A finite sum of small submodules of $M$ is always small in $M$.
\item[(14)] If $M$ is finitely generated, then $\rad(M) \ll M$. In particular, $J(R)
\ll R$.
\item[(15)] If $M\neq 0$ is finitely generated, then $\rad(M)\neq M$.
\item[(16)] If $C\leq M$, then $(C+\rad(M))/C \subseteq \rad(M/C)$.
\end{enumerate}
\end{theorem}
\begin{proof}\leavevmode
\begin{enumerate}[nolistsep]
\item[(1)] Suppose that $f(A)+B=f(M)$ for some submodule $B\subseteq f(M)$. Set
$X=f^{-1}(B)$. We claim that $A+X=M$. If $m\in M$, then $f(m)\in f(M)=f(A)+B$ and
hence $f(m)=f(a)+b$ for some $a\in A; b\in B$, implying $f(m-a)=b\Longleftrightarrow
m-a\in f^{-1}(b)\subseteq f^{-1}(B)=X \Longrightarrow m-a=x;\, x\in X \Longrightarrow
m=a+x$. Therefore, $M=A+X$, as claimed. Since $A \ll M$, $X=M$. Now,
$f(M)=f(X)=f\bigl(f^{-1}(B) \bigr)\subseteq B$, proving $B=f(M)$. Consequently, $f(A)
\ll f(M)$.
\item[(2)] Let $M=A+A'$ for some submodule $A'\subseteq M$. Then $X=A+(A'\cap X)$.
Since $A \ll X$, $A'\cap X = X$ which gives $X\subseteq A'$. So, $A\subseteq X
\subseteq A'$ and thus $A'=A+A'=M$, as needed. Accordingly, $A \ll M$.
\item[(3)] By (1) and (2), $f\bigl( \rad(M) \bigr)=f\left(\sum_{A\ll M}A
\right)=\sum_{A \ll M}f(A) \subseteq \sum_{B\ll f(M)}B\subseteq \sum_{B\ll
N}B=\rad(N)$.
\item[(4)] Let $X$ be any submodule of $M$. Consider the injection $\iota:X
\hookrightarrow M$. By (3), $\rad(X)=\iota\bigl(\rad(X) \bigr)\subseteq \rad(M)$.
\item[(5)] Consider the canonical projection $\pi_i:M\to M_i$ for each $i\in I$. By
(3), $\pi_i\bigl(\rad(M)\bigr)\subseteq \rad(M_i)$. Consequently, $\rad(M) \subseteq
\sum_{i\in I} \pi_i\bigl(\rad(M) \bigr) \subseteq \sum_{i\in I}\rad(M_i)$. Indeed, by
(4), $\sum_{i\in I}\rad(M_i) \subseteq \rad(M)$. Hence, $\rad(M)=\bigoplus_{i\in
I}\rad(M_i)$.
\item[(6)] Notice first that $\rad(S)=0$ for any simple right $R$-module $S$. If $M$
is semisimple, then $S=\bigoplus_{\lambda\in \Lambda}S_{\lambda}$ with each
$S_{\lambda}$ simple. By (5), $\rad(M)=\bigoplus_{\lambda\in
\Lambda}\rad(S_{\lambda})=0$. If $R$ is a semisimple ring, then any right $R$-module
is semisimple and hence its radical is zero.
\item[(7)] First, we show that $\rad(M)\subseteq \bigcap \bigl\lbrace E: E< M \text{
maximal} \bigr\rbrace$. Let $E$ be any essential submodule of $M$ and consider the
canonical projection $\pi:M\to M/L$. By (3), $\rad(M)+L=\pi\bigl(\rad(M) \bigr)
\subseteq \rad(M/L)=L$. Hence, $\rad(M)\subseteq L$, proving $\rad(M)\subseteq
\bigcap \bigl\lbrace E: E< M \text{ maximal} \bigr\rbrace$. Second, we show that
$\bigcap \bigl\lbrace E: E < M \text{ maximal} \bigr\rbrace \subseteq \rad(M)$. Let
$x\in \bigcap \bigl\lbrace E: E< M \text{ maximal} \bigr\rbrace$ be arbitrary. We
prove that $\rad(xR)=xR$. If not, then there exists a maximal submodule $L$ of $xR$
containing $\rad(xR)$. By the hypothesis, $x\in L$. But then $L=xR$ which
contradicts the maximality of $L$. Thus, we must have $\rad(xR)=xR$. So, $x\in
\rad(xR)\subseteq \rad(M)$.
\item[(8)] If $A\summand M$, then $M=A\s B$ for some $B\leq M$. By (5),
$\rad(M)=\rad(A) \s \rad(B)$. If $x\in \rad(M)\cap A$, then $x=y+z$ with $y\in
\rad(A)$ and $z\in \rad(B)$. Equivalently, $z=x-y\in A\cap \rad(B)=0$. As a
consequence, $x=y\in \rad(A)$. This proves that $\rad(A)=A\cap \rad(M)$.
\item[(9)] For clarity, we split the proof of this item into the following steps:
\begin{itemize}[nolistsep]
\item[(a)] Given a right module $A$ and a submodule $B\subseteq A$, we show that
the collection $\mathscr{L}$ of all maximal submodules of $A/B$ is
$\mathcal{M}:=\lbrace C/B : B \subset C \,\, \& \,\, C \subset A \text{ maximal}
\rbrace$. Let $C/B$ be any maximal submodule of $A/B$ and put $C\subseteq L
\subseteq A$. Therefore, $C/B \subseteq L/B \subseteq A/B$ and hence, by the
maximality of $C/B$, either $C/B=L/B$ or $L/B=A/B$. Consequently, either $C=L$ or
$L=A$, proving the maximality of $C$ in $A$. Hence, $\mathscr{L}\subseteq
\mathcal{M}$. Conversely, let $C$ be any maximal submodule of $A$ containing $B$.
We show that $C/B$ is maximal in $A/B$. If $C/B \subseteq D/B \subseteq A/B$, then
$C\subseteq D \subseteq A$ and therefore, by the maximality of $C\subset A$, either
$C=D$ or $D=A$. That is, either $C/B=D/B$ or $D/B=A/B$, proving the maximality of
$C/B\subset A/B$. This proves that $\mathcal{M} \subseteq \mathscr{L}$.
\item[(b)] Given a right module $A$, a submodule $B\subseteq A$, and a collection
$\lbrace A_i \rbrace_{i\in I}$ of submodules of $A$ all of which containing $B$, we
show that $\bigcap_{i\in I}A_i/B = \left(\bigcap_{i\in I}A_i \right)/B$. Indeed,
$\left(\bigcap_{i\in I}A_i \right)/B \subseteq \bigcap_{i\in I}A_i/B$. Conversely,
let $x\in \bigcap_{i\in I}A_i/B$ be arbitrary. Let $i_0\in I$ be fixed. Since $x\in
A_{i_0}/B$, $x=a+B$ for some $a\in A_{i_0}$. Given $i\in I$ (not necessarily
$i_0$), $x=a_i+B$ for some $a_i\in A$. Hence, $a+B=a_i+B \Longleftrightarrow a-
a_i=b\in B \Longleftrightarrow a=a_i+b \Longleftrightarrow a\in A_i$. That is,
$a\in \bigcap_{i\in I}A_i$ and so $x\in \bigcap_{i\in I}A_i/B$, proving
$\left(\bigcap_{i\in I}A_i\right)/B \subseteq \bigcap_{i\in I}A_i/B$.
\item[(c)] We are now in position to prove our statement. By (a) and (b),
\begin{align*}
\rad\left(M/\rad(M) \right)
&= \bigcap_{\substack{E\subset M/\rad(M) \\ \text{maximal} }} E \\
&= \bigcap_{\substack{A\subset M \\ \text{maximal} }} A/\rad(M) \\
&= \left( \bigcap_{\substack{A\subset M \\ \text{maximal} }} A \right)/\rad(M) \\
&= \rad(M) / \rad(M) \\
&= 0.
\end{align*}
\end{itemize}
\end{enumerate}
\end{proof}
\end{document}
我的问题很奇怪:证明中的第 9 项有一个很大的空格。具体来说,是在开始子列表之前。这个不合理的间距是什么原因造成的?!
谁能帮我测试一下这段代码并帮我解决这个问题?!
提前致谢。
答案1
问题在于牢不可破的最终展示。
事实证明,如果你
- 删除
\smallskip
定义和定理之间的 \qedhere
在最终显示的最后一行中使用(可能你还有其他步骤需要分析,在这种情况下删除\qedhere
),- 在最终显示的第三行中使用
\biggl
and代替and ,\biggr
\left
\right
那么文本可以容纳两页。但这是特别指定. 在其他情况下,您可能需要明智地添加\displaybreak
,以允许较长的多行显示跨页显示。
请注意,\smallskip
在和在类似定理的环境之前。
您的代码中还存在其他不一致之处:定义
\DeclareMathOperator{\s}{\oplus}
\DeclareMathOperator{\summand}{\subseteq^{\oplus}}
是错误的,因为符号不是运算符。定义
\newcommand{\s}{\oplus} % binary operation
\newcommand{\summand}{\subseteq^{\oplus}} % binary relation
之后\,
Im
颇为可疑。
我展示了一个编辑版本。它仍然有一个需要解决的溢出框。\textit
最好使用而不是\emph
。此外,您可以使用enumitem
设施来避免手动编号列表。
\documentclass[12pt,a4paper]{article}
\usepackage[utf8]{inputenc}
\usepackage[
left=1in,
right=1in,
top=1.5in,
bottom=1in,
headsep=20pt,
heightrounded, % <-- because of flushbottom
]{geometry}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amsthm}
\usepackage{enumitem}
\usepackage{mathrsfs}
\newtheorem{theorem}{Theorem}
\theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition}
\DeclareMathOperator{\im}{Im} % No \,
\DeclareMathOperator{\rad}{rad}
%\DeclareMathOperator{\s}{\oplus} %????
%\DeclareMathOperator{\summand}{\subseteq^{\oplus}} %???
\newcommand{\s}{\oplus}
\newcommand{\summand}{\subseteq^{\oplus}}
\begin{document}
\flushbottom
\begin{definition}
Let $M$ be a right $R$-module, a submodule $A\subset M$ is called \emph{small}
(written $A \ll M$) if there is no proper submodule $B\subset M$ with $A+B=M$.
Equivalently, whenever $A+B=M$ then $B=M$. The radical of $M$, denoted $\rad(M)$, is
defined to be the sum of small submodules of $M$.
\end{definition}
\begin{theorem}[\textsc{Properties Of Small Submodules And The Radical}]
Let $M$ and $N$ be any right modules, and $f:M\to N$ any homomorphism.
\begin{enumerate}[nolistsep,label=\upshape(\arabic*)]
\item If $A\ll M$, then $f(A) \ll f(N)$.
\item If $A \ll X$ and $X \leq M$, then $A \ll M$.
\item $f\bigl( \rad(M)\bigr) \subseteq \rad(N)$.
\item $\rad(X)\subseteq \rad(M)$ for every submodule $X \leq M$.
\item If $M= \bigoplus_{i\in I}M_i$, then $\rad(M)=\bigoplus_{i\in I}\rad(M_i)$.
\item If $M$ is semisimple, then $\rad(M)=0$. In particular, if $R$ is
semisimple then $\rad(M_R)=0$.
\item $\rad(M)=\bigcap \lbrace E : E < M \text{ maximal} \rbrace$.
\item If $A \summand M$, then $\rad(A)=A\cap \rad(M)$.
\item $\rad\bigl(M/\rad(M) \bigr)=0$.
\item $\rad(M)=\bigcap \lbrace B \subseteq M : (M/B)_R \text{ semisimple} \rbrace$.
\item $J(R)= \bigcap \bigl\lbrace \mathcal{R}(S_R) : S_R \text{ simple}
\bigr\rbrace$, where $\mathcal{R}(S_R)$ stands for the right annihilator of $S_R$.
In particular, $J(R)$ is a two-sided ideal of $R$.
\item $M J(R) \subseteq \rad(M)$. The equality holds if $M$ is projective.
\item A finite sum of small submodules of $M$ is always small in $M$.
\item If $M$ is finitely generated, then $\rad(M) \ll M$. In particular, $J(R) \ll R$.
\item If $M\neq 0$ is finitely generated, then $\rad(M)\neq M$.
\item If $C\leq M$, then $(C+\rad(M))/C \subseteq \rad(M/C)$.
\end{enumerate}
\end{theorem}
\begin{proof}\leavevmode
\begin{enumerate}[nolistsep,label=\upshape(\arabic*)]
\item Suppose that $f(A)+B=f(M)$ for some submodule $B\subseteq f(M)$. Set
$X=f^{-1}(B)$. We claim that $A+X=M$. If $m\in M$, then $f(m)\in f(M)=f(A)+B$ and
hence $f(m)=f(a)+b$ for some $a\in A; b\in B$, implying $f(m-a)=b\Longleftrightarrow
m-a\in f^{-1}(b)\subseteq f^{-1}(B)=X \Longrightarrow m-a=x;\, x\in X \Longrightarrow
m=a+x$. Therefore, $M=A+X$, as claimed. Since $A \ll M$, $X=M$. Now,
$f(M)=f(X)=f\bigl(f^{-1}(B) \bigr)\subseteq B$, proving $B=f(M)$. Consequently, $f(A)
\ll f(M)$.
\item Let $M=A+A'$ for some submodule $A'\subseteq M$. Then $X=A+(A'\cap X)$.
Since $A \ll X$, $A'\cap X = X$ which gives $X\subseteq A'$. So, $A\subseteq X
\subseteq A'$ and thus $A'=A+A'=M$, as needed. Accordingly, $A \ll M$.
\item By (1) and (2), $f\bigl( \rad(M) \bigr)=f\left(\sum_{A\ll M}A
\right)=\sum_{A \ll M}f(A) \subseteq \sum_{B\ll f(M)}B\subseteq \sum_{B\ll
N}B=\rad(N)$.
\item Let $X$ be any submodule of $M$. Consider the injection $\iota:X
\hookrightarrow M$. By (3), $\rad(X)=\iota\bigl(\rad(X) \bigr)\subseteq \rad(M)$.
\item Consider the canonical projection $\pi_i:M\to M_i$ for each $i\in I$. By
(3), $\pi_i\bigl(\rad(M)\bigr)\subseteq \rad(M_i)$. Consequently, $\rad(M) \subseteq
\sum_{i\in I} \pi_i\bigl(\rad(M) \bigr) \subseteq \sum_{i\in I}\rad(M_i)$. Indeed, by
(4), $\sum_{i\in I}\rad(M_i) \subseteq \rad(M)$. Hence, $\rad(M)=\bigoplus_{i\in
I}\rad(M_i)$.
\item Notice first that $\rad(S)=0$ for any simple right $R$-module $S$. If $M$
is semisimple, then $S=\bigoplus_{\lambda\in \Lambda}S_{\lambda}$ with each
$S_{\lambda}$ simple. By (5), $\rad(M)=\bigoplus_{\lambda\in
\Lambda}\rad(S_{\lambda})=0$. If $R$ is a semisimple ring, then any right $R$-module
is semisimple and hence its radical is zero.
\item First, we show that $\rad(M)\subseteq \bigcap \bigl\lbrace E: E< M \text{
maximal} \bigr\rbrace$. Let $E$ be any essential submodule of $M$ and consider the
canonical projection $\pi:M\to M/L$. By (3), $\rad(M)+L=\pi\bigl(\rad(M) \bigr)
\subseteq \rad(M/L)=L$. Hence, $\rad(M)\subseteq L$, proving $\rad(M)\subseteq
\bigcap \bigl\lbrace E: E< M \text{ maximal} \bigr\rbrace$. Second, we show that
$\bigcap \bigl\lbrace E: E < M \text{ maximal} \bigr\rbrace \subseteq \rad(M)$. Let
$x\in \bigcap \bigl\lbrace E: E< M \text{ maximal} \bigr\rbrace$ be arbitrary. We
prove that $\rad(xR)=xR$. If not, then there exists a maximal submodule $L$ of $xR$
containing $\rad(xR)$. By the hypothesis, $x\in L$. But then $L=xR$ which
contradicts the maximality of $L$. Thus, we must have $\rad(xR)=xR$. So, $x\in
\rad(xR)\subseteq \rad(M)$.
\item If $A\summand M$, then $M=A\s B$ for some $B\leq M$. By (5),
$\rad(M)=\rad(A) \s \rad(B)$. If $x\in \rad(M)\cap A$, then $x=y+z$ with $y\in
\rad(A)$ and $z\in \rad(B)$. Equivalently, $z=x-y\in A\cap \rad(B)=0$. As a
consequence, $x=y\in \rad(A)$. This proves that $\rad(A)=A\cap \rad(M)$.
\item For clarity, we split the proof of this item into the following steps:
\begin{enumerate}[nolistsep,label=(\alph*)]
\item Given a right module $A$ and a submodule $B\subseteq A$, we show that
the collection $\mathscr{L}$ of all maximal submodules of $A/B$ is
$\mathcal{M}:=\lbrace C/B : B \subset C \,\, \& \,\, C \subset A \text{ maximal}
\rbrace$. Let $C/B$ be any maximal submodule of $A/B$ and put $C\subseteq L
\subseteq A$. Therefore, $C/B \subseteq L/B \subseteq A/B$ and hence, by the
maximality of $C/B$, either $C/B=L/B$ or $L/B=A/B$. Consequently, either $C=L$ or
$L=A$, proving the maximality of $C$ in $A$. Hence, $\mathscr{L}\subseteq
\mathcal{M}$. Conversely, let $C$ be any maximal submodule of $A$ containing $B$.
We show that $C/B$ is maximal in $A/B$. If $C/B \subseteq D/B \subseteq A/B$, then
$C\subseteq D \subseteq A$ and therefore, by the maximality of $C\subset A$, either
$C=D$ or $D=A$. That is, either $C/B=D/B$ or $D/B=A/B$, proving the maximality of
$C/B\subset A/B$. This proves that $\mathcal{M} \subseteq \mathscr{L}$.
\item Given a right module $A$, a submodule $B\subseteq A$, and a collection
$\lbrace A_i \rbrace_{i\in I}$ of submodules of $A$ all of which containing $B$, we
show that $\bigcap_{i\in I}A_i/B = \left(\bigcap_{i\in I}A_i \right)/B$. Indeed,
$\left(\bigcap_{i\in I}A_i \right)/B \subseteq \bigcap_{i\in I}A_i/B$. Conversely,
let $x\in \bigcap_{i\in I}A_i/B$ be arbitrary. Let $i_0\in I$ be fixed. Since $x\in
A_{i_0}/B$, $x=a+B$ for some $a\in A_{i_0}$. Given $i\in I$ (not necessarily
$i_0$), $x=a_i+B$ for some $a_i\in A$. Hence, $a+B=a_i+B \Longleftrightarrow a-
a_i=b\in B \Longleftrightarrow a=a_i+b \Longleftrightarrow a\in A_i$. That is,
$a\in \bigcap_{i\in I}A_i$ and so $x\in \bigcap_{i\in I}A_i/B$, proving
$\left(\bigcap_{i\in I}A_i\right)/B \subseteq \bigcap_{i\in I}A_i/B$.
\item We are now in position to prove our statement. By (a) and (b),
\begin{align*}
\rad(M/\rad(M))
&= \bigcap_{\substack{E\subset M/\rad(M) \\ \text{maximal} }} E \\
&= \bigcap_{\substack{A\subset M \\ \text{maximal} }} A/\rad(M) \\
&= \biggl(\, \bigcap_{\substack{A\subset M \\ \text{maximal} }} A \biggr)\bigg/\rad(M) \\
&= \rad(M) / \rad(M) \\
&= 0.\qedhere
\end{align*}
\end{enumerate}
\end{enumerate}
\end{proof}
\end{document}
检查差异。
答案2
删除后就正常了\flushbottom
。另外,我们可以从几点来改进代码:
- 删除
\samllskip
; \allowdisplaybreaks
在序言中输入,允许align
在允许环境分页的- 插入
\qedhere
之后&= 0
和之前\end{align*}
; - 将序言中的枚举数字格式更改为如下格式
\renewcommand{\labelenumi}{(\theenumi)}%
那么第一级的枚举数将是(1),(2),(3)等等;
- 将序言中的枚举格式更改为如下
\usepackage{enumitem}
\setenumerate[1,2,3]{itemsep=0pt,partopsep=\parskip,parsep=0pt,topsep=0pt}
那么项目之间的间距将变为 0pt,并且整个枚举环境之前和之后的间距将与\parskip
。
另外,由于这个定理太大,最好将其分成几个。