我正在寻求有关格式化解决方案的帮助。具体来说,我正在寻找一种方法来对解决方案的每个步骤进行编号,而不使用“步骤 1:”、“步骤 2:”等格式。我希望找到一种更具视觉吸引力的方式来对每个步骤进行编号。
此外,如果您能帮助我在 Overleaf 上整齐地格式化解决方案,我将不胜感激。如果有人有能力帮助我解决这些问题,请告诉我。
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\section{Task}
1. Calculate the inverse of the matrix
\[
B=\left[\begin{array}{lll}
0 & 2 & 3 \\
2 & 4 & 0 \\
3 & 5 & 1
\end{array}\right]
\]
\subsection{Solution}
Gauss-Jordan elimination can be used to compute the inverse of the matrix $B$ . We start by augmenting the matrix B with an identity matrix to the right of the matrix $B$, so that we get it in the form $\left[B | I\right]$:
\[
\left[\begin{array}{lll|lll}
0 & 2 & 3 & 1 & 0 & 0 \\
2 & 4 & 0 & 0 & 1 & 0 \\
3 & 5 & 1 & 0 & 0 & 1
\end{array}\right]
\]
Step 1: Swap rows 1 and 2
\[
\left[\begin{array}{lll|lll}
2 & 4 & 0 & 0 & 1 & 0 \\
0 & 2 & 3 & 1 & 0 & 0 \\
3 & 5 & 1 & 0 & 0 & 1
\end{array}\right]
\]
Step 2: Divide row 1 by 2
\[
\left[\begin{array}{lll|lll}
1 & 2 & 0 & 0 & \frac{1}{2} & 0 \\
0 & 2 & 3 & 1 & 0 & 0 \\
3 & 5 & 1 & 0 & 0 & 1
\end{array}\right]
\]
Step 3: Divide row 2 by 2
\[
\left[\begin{array}{lll|lll}
1 & 2 & 0 & 0 & \frac{1}{2} & 0 \\
0 & 1 & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\
3 & 5 & 1 & 0 & 0 & 1
\end{array}\right]
\]
Step 4: Multiply row 1 by 3 and subtract 3*row 1 from row 3
\[
\left[\begin{array}{lll|lll}
1 & 2 & 0 & 0 & \frac{1}{2} & 0 \\
0 & 1 & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\
0 & -1 & 1 & 0 & -\frac{3}{2} & 1
\end{array}\right]
\]
Step 5: Add row 3 with row 2
\[
\left[\begin{array}{lll|lll}
1 & 2 & 0 & 0 & \frac{1}{2} & 0 \\
0 & 1 & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{5}{2} & \frac{1}{2} & -\frac{3}{2} & 1
\end{array}\right]
\]
Step 6: Add $-2\cdot$ row 2 to row 1
\[
\left[\begin{array}{lll|lll}
1 & 0 & -3 & -1 & \frac{1}{2} & 0 \\
0 & 1 & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{5}{2} & \frac{1}{2} & -\frac{3}{2} & 1
\end{array}\right]
\]
Step 7: $R_3' = 5/2 \cdot R_3$
\[
\left[\begin{array}{lll|lll}
1 & 0 & -3 & -1 & \frac{1}{2} & 0 \\
0 & 1 & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\
0 & 0 & 1 & \frac{1}{5} & -\frac{3}{5} & \frac{2}{5}
\end{array}\right]
\]
Step 8: $R_1' = 3R_3+R_1$ and $R_2' = -1.5\cdot R_3 + R_2$
\[
\left[\begin{array}{lll|lll}
1 & 0 & 0 & -\frac{2}{5} & -\frac{13}{10} & \frac{6}{5} \\
0 & 1 & 0 & \frac{1}{5} & \frac{9}{10} & -\frac{3}{5} \\
0 & 0 & 1 & \frac{1}{5} & -\frac{3}{5} & \frac{2}{5}
\end{array}\right]
\]
We now have the matrix in reduced stair step form, which means we have found its inverse. Thus is
\[
\left[\begin{array}{lll|lll}
1 & 0 & 0 & -\frac{2}{5} & -\frac{13}{10} & \frac{6}{5} \\
0 & 1 & 0 & \frac{1}{5} & \frac{9}{10} & -\frac{3}{5} \\
0 & 0 & 1 & \frac{1}{5} & -\frac{3}{5} & \frac{2}{5}
\end{array}\right]
\]
\end{document}
答案1
- 不是一个真正的答案......
- 看来您可以尝试使用
exam
documentclass,它可能更适合您的目的 - 但文档的设计由您决定
- 以下是可能的文档设计示例,其中介绍了
enumitem
您的步骤的包:
\documentclass{article}
\usepackage{amsmath}
\renewcommand\arraystretch{1.2}
\usepackage{enumitem}
\begin{document}
\section{Task}
Calculate the inverse of the matrix
\[
B = \begin{bmatrix}
0 & 2 & 3 \\
2 & 4 & 0 \\
3 & 5 & 1
\end{bmatrix}
\]
\subsection*{Solution}
Gauss-Jordan elimination can be used to compute the inverse of the matrix $B$. We start by augmenting the matrix B with an identity matrix to the right of the matrix $B$, so that we get it in the form $\left[B | I\right]$:
\[
\left[\begin{array}{lll|lll}
0 & 2 & 3 & 1 & 0 & 0 \\
2 & 4 & 0 & 0 & 1 & 0 \\
3 & 5 & 1 & 0 & 0 & 1
\end{array}\right]
\]
To the solution then yield the following steps:
\begin{enumerate}[leftmargin=*]
\item Swap rows 1 and 2
\[
\left[\begin{array}{ccc|ccc}
2 & 4 & 0 & 0 & 1 & 0 \\
0 & 2 & 3 & 1 & 0 & 0 \\
3 & 5 & 1 & 0 & 0 & 1
\end{array}\right]
\]
\item Divide row 1 by 2
\[
\left[\begin{array}{ccc|rrr}
1 & 2 & 0 & 0 & \frac{1}{2} & 0 \\
0 & 2 & 3 & 1 & 0 & 0 \\
3 & 5 & 1 & 0 & 0 & 1
\end{array}\right]
\]
\item Divide row 2 by 2
\[
\left[\begin{array}{ccc|ccc}
1 & 2 & 0 & 0 & \frac{1}{2} & 0 \\
0 & 1 & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\
3 & 5 & 1 & 0 & 0 & 1
\end{array}\right]
\]
\item Multiply row 1 by 3 and subtract 3*row 1 from row 3
\[
\left[\begin{array}{rrr|rrr}
1 & 2 & 0 & 0 & \frac{1}{2} & 0 \\
0 & 1 & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\
0 & -1 & 1 & 0 & -\frac{3}{2} & 1
\end{array}\right]
\]
\item Add row 3 with row 2
\[
\left[\begin{array}{rrr|rrr}
1 & 2 & 0 & 0 & \frac{1}{2} & 0 \\
0 & 1 & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{5}{2} & \frac{1}{2} & -\frac{3}{2} & 1
\end{array}\right]
\]
\item Add $-2\cdot$ row 2 to row 1
\[
\left[\begin{array}{rrr|rrr}
1 & 0 & -3 & -1 & \frac{1}{2} & 0 \\
0 & 1 & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{5}{2} & \frac{1}{2} & -\frac{3}{2} & 1
\end{array}\right]
\]
\item $R_3' = 5/2 \cdot R_3$
\[
\left[\begin{array}{rrr|rrr}
1 & 0 & -3 & -1 & \frac{1}{2} & 0 \\
0 & 1 & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\
0 & 0 & 1 & \frac{1}{5} & -\frac{3}{5} & \frac{2}{5}
\end{array}\right]
\]
\item $R_1' = 3R_3+R_1$ and $R_2' = -1.5\cdot R_3 + R_2$
\[
\left[\begin{array}{lll|rrr}
1 & 0 & 0 & -\frac{2}{5} & -\frac{13}{10} & \frac{6}{5} \\
0 & 1 & 0 & \frac{1}{5} & \frac{9}{10} & -\frac{3}{5} \\
0 & 0 & 1 & \frac{1}{5} & -\frac{3}{5} & \frac{2}{5}
\end{array}\right]
\]
We now have the matrix in reduced stair step form, which means we have found its inverse. Thus is
\[
\left[\begin{array}{lll|rrr}
1 & 0 & 0 & -\frac{2}{5} & -\frac{13}{10} & \frac{6}{5} \\
0 & 1 & 0 & \frac{1}{5} & \frac{9}{10} & -\frac{3}{5} \\
0 & 0 & 1 & \frac{1}{5} & -\frac{3}{5} & \frac{2}{5}
\end{array}\right]
\]
\end{enumerate}
\end{document}
答案2
您可以加载该enumitem
包并使用其机制创建一个枚举列表,其项目以单词“Step”开头。
\documentclass{article}
\usepackage{amsmath} % for 'bmatrix' environment
\usepackage{enumitem}
\newlist{stepenum}{enumerate}{1}
\setlist[stepenum]{label={Step \arabic*.},wide=0pt}
\begin{document}
\section{Task}
1. Calculate the inverse of the matrix
\[
B=\begin{bmatrix}
0 & 2 & 3 \\
2 & 4 & 0 \\
3 & 5 & 1
\end{bmatrix}
\]
\subsection{Solution}
Gauss-Jordan elimination can be used to compute the inverse of the matrix $B$. We start by augmenting the matrix $B$ with an identity matrix to the right of the matrix $B$, so that we get it in the form $[B \mid I]$:
\[
\left[\begin{array}{@{}rrr|rrr@{}}
0 & 2 & 3 & 1 & 0 & 0 \\
2 & 4 & 0 & 0 & 1 & 0 \\
3 & 5 & 1 & 0 & 0 & 1
\end{array}\right]
\]
\begin{stepenum}
\item Swap rows 1 and 2
\[
\left[\begin{array}{@{}rrr|rrr@{}}
2 & 4 & 0 & 0 & 1 & 0 \\
0 & 2 & 3 & 1 & 0 & 0 \\
3 & 5 & 1 & 0 & 0 & 1
\end{array}\right]
\]
\item Divide row 1 by 2
\[
\left[\begin{array}{@{}rrr|rrr@{}}
1 & 2 & 0 & 0 & \frac{1}{2} & 0 \\
0 & 2 & 3 & 1 & 0 & 0 \\
3 & 5 & 1 & 0 & 0 & 1
\end{array}\right]
\]
\item Divide row 2 by 2
\[
\left[\begin{array}{@{}rrr|rrr@{}}
1 & 2 & 0 & 0 & \frac{1}{2} & 0 \\
0 & 1 & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\
3 & 5 & 1 & 0 & 0 & 1
\end{array}\right]
\]
\item Multiply row 1 by 3 and subtract 3*row 1 from row 3
\[
\left[\begin{array}{@{}rrr|rrr@{}}
1 & 2 & 0 & 0 & \frac{1}{2} & 0 \\
0 & 1 & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\
0 & -1 & 1 & 0 & -\frac{3}{2} & 1
\end{array}\right]
\]
\item Add row 3 with row 2
\[
\left[\begin{array}{@{}rrr|rrr@{}}
1 & 2 & 0 & 0 & \frac{1}{2} & 0 \\
0 & 1 & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\[\jot]
0 & 0 & \frac{5}{2} & \frac{1}{2} & -\frac{3}{2} & 1
\end{array}\right]
\]
\item Add $-2\cdot$ row 2 to row 1
\[
\left[\begin{array}{@{}rrr|rrr@{}}
1 & 0 & -3 & -1 & \frac{1}{2} & 0 \\
0 & 1 & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\[\jot]
0 & 0 & \frac{5}{2} & \frac{1}{2} & -\frac{3}{2} & 1
\end{array}\right]
\]
\item $R_3' = 5/2 \cdot R_3$
\[
\left[\begin{array}{@{}rrr|rrr@{}}
1 & 0 & -3 & -1 & \frac{1}{2} & 0 \\
0 & 1 & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\[\jot]
0 & 0 & 1 & \frac{1}{5} & -\frac{3}{5} & \frac{2}{5}
\end{array}\right]
\]
\item $R_1' = 3R_3+R_1$ and $R_2' = -1.5\cdot R_3 + R_2$
\[
\left[\begin{array}{@{}rrr|rrr@{}}
1 & 0 & 0 & -\frac{2}{5} & -\frac{13}{10} & \frac{6}{5} \\[\jot]
0 & 1 & 0 & \frac{1}{5} & \frac{9}{10} & -\frac{3}{5} \\[\jot]
0 & 0 & 1 & \frac{1}{5} & -\frac{3}{5} & \frac{2}{5}
\end{array}\right]
\]
\end{stepenum}
We now have the matrix in reduced stair step form, which means we have found its inverse. Thus is
\[
\left[\begin{array}{@{}rrr|rrr@{}}
1 & 0 & 0 & -\frac{2}{5} & -\frac{13}{10} & \frac{6}{5} \\[\jot]
0 & 1 & 0 & \frac{1}{5} & \frac{9}{10} & -\frac{3}{5} \\[\jot]
0 & 0 & 1 & \frac{1}{5} & -\frac{3}{5} & \frac{2}{5}
\end{array}\right]
\]
\end{document}