我的论文包含多个表格,我发现在 LaTeX 中管理它们很有挑战性,因为我对 LaTeX 表格的专业知识有限。我非常感谢您在这件事上提供帮助。
具体来说,对于表格1,表 2, 和表3如下图所示,表格内的字体明显较小。这个问题并非本表独有,而是我论文中所有表格中都存在的问题。
表格1
表 2
表3
这些表的代码如下(表格1):
\begin{table}[!htb]
\caption[Fabrication techniques of sensing materials and their attributes]{Common sensing materials fabrication techniques with their general benefits and limitations.}
\label{table1-1}
\begin{adjustbox}{width=\textwidth}
\setcellgapes{4pt}
\makegapedcells
\begin{tabular}[!htb]{@{} llcc @{}}
\hline
Method & Description & Benefits & Limitations \\
\hline
\multicolumn{4}{c}{\textbf{Wet synthesis methods}} \\
Sol-gel & A chemical process that involves the transition of a solution to a gel for material preparation under mild condition. & - Controlled composition\newline
- Good homogeneity\newline
- Low processing temperature\newline
- Versatility\newline & - Long processing time\newline
- Size reduction upon drying\newline
- Requires careful control of parameters\newline
- Often require post-synthesis treatments \\
Hydrothermal / solvothermal & Uses high temperature and pressure in aqueous (hydrothermal) or non-aqueous solutions (solvothermal). & - High purity\newline
- Crystallinity control\newline
- low to moderate temperatures\newline
- Scalable & - High pressure equipment\newline
- Limited range of particle size\newline
- Energy-intensive\newline
- Time-consuming \\
Electrodeposition & Electrochemical process for depositing a layer/coating of material by means of electric current. & - Cost-effective\newline
- Good control over thickness\newline
- Can coat complex shapes\newline
- Uniform deposition & - Limited to conductive substrates\newline
- May require post-treatment\newline
- Thickness limitations\newline
- Environmental concerns \\
Coprecipitation & Precipitation of a solid from a solution containing multiple ions under controlled aqueous solutions and environments. & - Simple process\newline
-Scalable\newline
- Low cost\newline
- Good control over composition & - Requires washing and filtration\newline
- Agglomeration issues\newline
- Poor impurity control\newline
- Poor particle size control \\
\multicolumn{4}{c}{\textbf{Dry synthesis methods}} \\
Atomic layer deposition & Thin film deposition technique based on the sequential use of a gas phase. & - Excellent control over thickness\newline
- High uniformity\newline
- Good conformality\newline
- High-quality films & - Slow deposition rate\newline
- Limited to certain materials\newline
- Expensive equipment\newline
- Temperature sensitivity \\
Sputtering & Physical vapor deposition technique for thin film creation using suitable energy of a plasma. & - Versatile materials
- Good adhesion\newline
- Scalable\newline
- Uniform thickness\newline
- Good control of film thickness & - Costly equipment\newline
- May require high vacuum\newline
- Limited substrate size\newline
- Limit of precursor penetration depth \\
Chemical vapor deposition & Depositing solid material from a vapor by a chemical reaction under controlled atmospheres. & - High purity and quality\newline
- Direct electrode assembly\newline
- Scalable\newline
- Wide material choice & - High temperatures\newline
- Complex equipment\newline
- Safety concerns with gases\newline
- Uniformity challenges\newline
- Low production rate \\
Spray pyrolysis & Atomization of a precursor solution into droplets, followed by the evaporation of solvents and decomposition of the metal source in a heated reactor to generate particles. & - Simple setup\newline
- Cost-effective\newline
- Versatile materials\newline
- Large area deposition & - Poor particle size control\newline
- Requires heat/high-temperature management\newline
- May produce rough surfaces\newline
- Limited film thickness \\
Flame spray pyrolysis & Atomization of a precursor solution into droplets, followed by the combustion of solvents and decomposition of a precursor(s) to create nuclei then form nanoparticles. & - High production rate\newline
- Good control of particle composition\newline
- Scalable\newline
- Versatile & - High temperatures\newline
- Health \& safety concerns\newline
- Equipment cost\newline
- Particle agglomeration \\
\hline
\end{tabular}
\end{adjustbox}
\end{table}
表 2:
\begin{table}[!htb]
\caption[Recent studies on room temperature VOC sensors.]{Comparison of recent studies of room temperature VOC sensors.}
\label{table2-1}
\begin{adjustbox}{width=\textwidth}
\setcellgapes{4pt}
\makegapedcells
\begin{tabular}[!htb]{@{}lccccccc@{}}
\hline
Material & Temperature (\textdegree C) & External Catalyst & EtOH concentration (ppm) & Responsivity (I\textsubscript{EtOH}/I\textsubscript{air} -1) & Limit of Detection (ppm) & Response/Recovery times (sec) & Ref. \\
\hline
Thick Porous \ce{ZnO} fractals & RT & Solar light & 0.05, 1 & 2.22, 10.41 & 0.01 & 448/505, 300/360 & This work \\
\ce{ZnO-NiO} nanoheterjunctions & RT & Solar light & 0.1 & 0.77 & 0.01 & N/A & [9b] \\
\ce{ZnO} nanorods & RT & UV light & 200 & 4.24\textsuperscript{a)} & N/A & 52/192 & [18] \\
\ce{Cr2O3} functionalized \ce{ZnO} & RT & UV light & 200 & 10.95\textsuperscript{a)} & N/A & 26/110 & [18] \\
\ce{$\alpha$-Fe2O3}/\ce{ZnO} nanowires & RT & N/A & 100 & 9.1\% & 100 & N/A & [30a] \\
Au-modified \ce{ZnO} nanowire & RT & N/A & 20 & ~10\textsuperscript{b)} & N/A & -/5 & [30b] \\
\ce{ZnO} nano disks & RT & Thermally and UV activated & 100 & 0.17 & 20 & 11/15 & [39] \\
Au-\ce{ZnO} nanofibers & RT & UV & 100 & 1.18\textsuperscript{c)} & N/A & N/A & [40] \\
\ce{ZnO} nanotubes & RT & N/A & 10 & 30.91\textsuperscript{d)} & N/A & 263/80 & [41] \\
\hline
\multicolumn{8}{l}{\small \textsuperscript{a)} I\textsubscript{ethanol}/I\textsubscript{air} *100; \textsuperscript{b)} 1-I\textsubscript{ethanol}/I\textsubscript{air} * 100; \textsuperscript{c)} I\textsubscript{ethanol}/I\textsubscript{air}; \textsuperscript{d)} 1-I\textsubscript{air}/I\textsubscript{ethanol} * 100}\\
\end{tabular}
\end{adjustbox}
\end{table}
表3:
\begin{table}[!htb]
\caption[Recent ethanol sensors with oxygen defects.]{Comparison of recently developed ethanol sensors with oxygen defects.}
\label{table2-2}
\begin{adjustbox}{width=\textwidth}
\setcellgapes{4pt}
\makegapedcells
\begin{tabular}[!htb]{@{}lccccccc@{}}
\hline
Material & Sensing Temp. (\textdegree C) & Oxygen Vacancy Introduction & EtOH Concentration (ppm) & Responsivity (I\textsubscript{EtOH}/I\textsubscript{air} -1) & Limit of Detection (ppm) & Response/Recovery Times (sec) & Ref. \\
\hline
Thick Porous \ce{ZnO} fractals & RT & DUV Photoactivation at 200 \textdegree C & 0.05, 1 & 2.22, 10.41 & 0.01 & 448/505, 300/360 & This work \\
Thick Porous \ce{ZnO} fractals & 150 & DUV Photoactivation at 200 \textdegree C & 0.05, 1 & 0.97, 15.9 & 0.005 & 371/486, 260/312 & This work \\
\ce{ZnO} nanorod arrays & 400 & \ce{H2O2} thermal treatment at 400 \textdegree C & 3 & ~70\textsuperscript{a)} & 1 & N/A & [35a] \\
Rutile \ce{SnO2} nanostructures & 190 & Reduction by \ce{NaBH4} & 20 & 37.2\textsuperscript{a)} & N/A & 42/17 & [43] \\
\ce{SnO2} nano-columns & RT & Reducing environment (Argon) & 400 & 1.27 & N/A & N/A & [42] \\
\ce{In2O3} octahedral particles & 200 & Phase transformation process from \ce{In(OH)3} at 300 \textdegree C & 1000 & 610\textsuperscript{a)} & N/A & 1-2/15-20 & [15] \\
\ce{ZnO} nanosheets & 330 & Preferential [0001] growth direction at 500 \textdegree C & 50 & 80\textsuperscript{a)} & N/A & N/A & [44] \\
Co-doped \ce{ZnO} microspheres & 220 & Co doping at 400 \textdegree C & 5 & 3.3\textsuperscript{a)} & N/A & N/A & [45] \\
Ce-doped \ce{ZnO} nanostructures & 300 & Ce-doping at 450 \textdegree C & 100 & 72.6\textsuperscript{a)} & N/A & 9/3 & [46] \\
\ce{ZnO}/\ce{SnO2} composite hollow spheres & 225 & Hydrothermal process, calcination at 400 \textdegree C & 30 & 34.8\textsuperscript{a)} & 0.5 & 1/- & [47] \\
\hline
\multicolumn{7}{l}{\small \textsuperscript{a)} I\textsubscript{ethanol}/I\textsubscript{air}} \\
\end{tabular}
\end{adjustbox}
\end{table}
我遇到了一个问题表4如下所示。每次我尝试编译包含此表的文档时,编译过程都会无限期地继续,无法完成。即使减少了\ce
表中命令的使用,问题仍然存在。此外,如果您能帮助将此表格式化为跨多个页面,我将不胜感激。
\begin{table}[!htb]
\caption{Summary of materials, precursors, solvents, and morphologies for various sensing applications.} \label{table:materials}
\begin{adjustbox}{width=\textwidth}
\setcellgapes{4pt}
\makegapedcells
\begin{tabular}[!htb]{@{}lccccc@{}}
\hline
Material & Precursor & Solvent & Nanostructure Morphology & Sensing Application & Ref. \\
\hline
La-doped \ce{WO3} & La(NO\textsubscript{3})\textsubscript{3}.6H\textsubscript{2}O & ethanol & nano particles & gas sensing & \cite{Zhang_2022} \\
\ce{WO3} & (NH\textsubscript{4})\textsubscript{6}H\textsubscript{2}OW\textsubscript{12}.xH\textsubscript{2}O & ethanol & nano particles (crystals) & gas sensing & \cite{Wu_2022} \\
Zn\textsubscript{2}SnO\textsubscript{4} & ZTO & ethanol & nano particles & photo detection & \cite{Karthick_2023} \\
ZnO & zinc naphthenate & m-xylene & nano particles & photo detection & \cite{Nasiri2015} \\
\ce{SnO2} & tin ethylhexanoate & xylene & nano particles & gas sensing & \cite{Keskinen_2009} \\
\ce{SnO2} & ethylhexanoate & ethanol & nano particles & gas sensing & \cite{Sahm_2004} \\
Pt-loaded WO\textsubscript{3} & tungsten ethoxide & ethanol & nano particles & gas sensing & \cite{Samerjai2011} \\
Nb-ZnO & & zinc naphthenate & toluene/methanol (70/30) Vol.\% & gas sensing & \cite{Kruefu_2011} \\
Nb-doped \ce{TiO2} & titanium isopropoxide & xylene/acetonitrile & nano powders & gas sensing & \cite{Phanichphant_2011} \\
\ce{TiO2} & titanium tetra isopropoxide & Xylene/acetonitrile & nano particles and films & gas sensing & \cite{Teleki_2006} \\
\ce{WO3} & ammonium tungsten hydrate & glycol/ethanol & nano particles & bio sensing & \cite{Wang_2008} \\
\ce{SnO2} & tin ethylhexanoate & xylene & nano powder & gas sensing & \cite{Liewhiran_2012} \\
Ru-\ce{SnO2} & tin ethylhexanoate & xylene & Nano powders/thick films & gas sensing & \cite{Liewhiran_2009} \\
Pt/ZnO & zinc naphthenate & xylene & Nano powder/thick films & gas sensing & \cite{Tamaekong2009} \\
Pt-loaded ZnO & zinc naphthenate & xylene & Nano particles/thick films & gas sensing & \cite{Tamaekong_2011} \\
Pd-ZnO & zinc naphthenate & toluene/acetonitrile (80/20) Vol.\% & nano particles/thick films & gas sensing & \cite{Liewhiran_2008} \\
Nb- and Cu-doped \ce{TiO2} & titanium tetra isopropoxide & xylene & nano particles & gas sensing & \cite{TELEKI_2008} \\
Bi\textsubscript{2}WO\textsubscript{6} & bismuth nitrate pentahydrate, tungsten ethoxide & ethanol, acetic acid & nano particles & gas sensing & \cite{Punginsang_2019} \\
PdO\textsubscript{x} doped \ce{In2O3} & indium nitrate hydrate, palladium acetylacetonate & ethanol & nano particles & gas sensing & \cite{Inyawilert_2019} \\
Pt doped \ce{In2O3} & indium nitrate & ethanol & nano particles & gas sensing & \cite{Inyawilert_2016} \\
Pd doped \ce{SnO2} & tin ethylhexanoate & xylene/acetonitrile (80/20) Vol.\% & nano particles & gas sensing & \cite{Liewhiran_2013} \\
rGO doped ZnO & Au and Pd & de-ionized water & nano fibers & gas sensing & \cite{Abideen2018} \\
ZnO & zinc naphthenate & xylene & nano particles & photo detection & \cite{Nasiri2016} \\
\ce{SnO2} & tin chloride & ammonia solution & nano powder & gas sensing & \cite{Xu1991} \\
Pd-ZnO & zinc nephthanate and palladium acetylacetonate & toluene and acetonitrile & nano particles & gas sensing & \cite{Liewhiran2007} \\
\ce{SnO2} and ZnO & tin oxide & nitric acid & nano powder & gas sensing & \cite{Yamazoe1983} \\
\ce{WO3} & ammonium metatungstate hydrate, polyvinylpyroolidone & dimethylformamide & nano fibers & gas sensing & \cite{Yang2021a} \\
\ce{TiO2} & titanium isopropoxide & ethanolamine & nano wires & gas sensing & \cite{Shooshtari2021} \\
Zn doped \ce{Fe2O3} & zinc nitrate hexahydrate, iron nitrate nanohydrate & de-ionized water & nano particles & gas sensing & \cite{Kim2011} \\
graphene loaded \ce{SnO2} & graphene, tin chloride dihydrate, polyvinyl acetate & ethanol, dimethylformamide & nano fibers & gas sensing & \cite{Abideen2017} \\
Au-ZnO & HAuCl\textsubscript{4} & Aqueous ammonia solution & nano wires & gas sensing & \cite{Wang2013} \\
\ce{SnO2} & tin chloride dihydrate & ethanol, dimethylformamide & nano fibers & gas sensing & \cite{Kim2016} \\
Ti doped ZnO & zinc ethylhexanoate, titanium tetraisopropoxide & xylene & nano particles & bio sensing & \cite{Guntner2016} \\
Pt/SnO\textsubscript{2} & tin ethylhexanoic acid, platinum acetylacetonate & toluene, & nano particles & gas sensing & \cite{Maedler2006} \\
NiO-ZnO & zinc nephthanate & xylene & nano particles & gas sensing & \cite{Chen2018} \\
Ag doped \ce{TiO2} & titanium isopropoxide, silver nitrate & ethanol & nano particles & photo detection & \cite{Yildirim2021} \\
Au & HAuCl\textsubscript{4} & ethanol & nano particles & photo detection & \cite{Thimsen2011} \\
MoO\textsubscript{3} & Mo Solid rod & de-ionized water & nano particles & gas sensing & \cite{Shafieyan2019} \\
Au & HAuCl\textsubscript{4} & ethanol & nano particles & photo detection & \cite{Fusco2019} \\
Au-\ce{TiO2} & HAuCl\textsubscript{4}, titanium isopropoxide & ethanol, xylene & nano particles & photo detection & \cite{Fusco2018a} \\
AgO-\ce{TiO2} & titanium isopropoxide, silver acetate & acetonitrile, ethyl hexanoic acid & nanohybrids & bio sensing & \cite{Guntner2023} \\
graphene Cu & copper naphthenate & xylene & nano particles/films & bio sensing & \cite{DiBernardo2020} \\
Au & gold chloride trihydrate & ethanol & nano particles & bio sensing & \cite{Dastidar2022} \\
Ag-\ce{SiO2} & silver nitrate, hexamethyldisiloxane & ethanol & nano particles & bio sensing & \cite{Sotiriou2013} \\
CuO & copper nitrate & - & nano particles & bio sensing & \cite{Yang2021} \\
Au & HAuCl\textsubscript{4} & ethanol & nano islands & bio sensing & \cite{Mondal2023} \\
CaP:Eu & calcium acetate hydrate, europium nitrate, tributyl phosphate & propionic acid & nano particles & bio sensing & \cite{Merkl2021} \\
\ce{SiO2}-coated \ce{Y2O3}:Tb\textsuperscript{3+} & yttrium nitrate, hexamethyl disiloxane & ethyl hexanoic acid, ethanol & nano particles & bio sensing and photo detection & \cite{Sotiriou2012} \\
enzyme minetic luminescent & cerium 2-ethylhexanoate, Eu-nitrate & methanol & nano particles & bio sensing & \cite{Pratsinis2017} \\
CuO-Cu\textsubscript{2}O & copper nitrate trihydrate & ethanol & nano particles & photo detection & \cite{Zhu2017} \\
nano silver \ce{SiO2} coating & Ag-benzoate, hexamethyl disiloxane & ethylhexanoic acid, benzonitrile & nano particles & bio sensing & \cite{Sotiriou2010} \\
ZnO & zinc naphthenate & xylene & nano particles & photo detection & \cite{Fang2017} \\
ZnO, \ce{SiO2}, \ce{TiO2} & zinc naphthenate, hexamethyldisiloxane, titanium isopropoxide & xylene & nano particles & photo detection & \cite{Nasiri2016a} \\
ZnO & zinc naphthenate & xylene & Nano particle film & photo detection & \cite{Nasiri2017} \\
\hline
\end{tabular}
\end{adjustbox}
\end{table}
我使用包。以下是来自和用于最小工作示例ClassicThesis
的代码的相关部分。ClassicThesis.tex
classicthesis-config.tex
\documentclass[ twoside,openright,titlepage,numbers=noenddot,%1headlines,
headinclude,footinclude,cleardoublepage=empty,abstract=on,
BCOR=5mm,paper=a4,fontsize=11pt
]{scrreprt}
\DeclareFieldFormat[article]{number}{(#1)}
\PassOptionsToPackage{fleqn}{amsmath} % math environments and more by the AMS
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage{scrhack}
\usepackage{xspace}
\PassOptionsToPackage{printonlyused,smaller}{acronym}
\usepackage{acronym}
\def\bflabel#1{{\acsfont{#1}\hfill}}
\def\aclabelfont#1{\acsfont{#1}}
\usepackage[figuresright]{rotating}
\usepackage{adjustbox}
\usepackage[version=4]{mhchem}
\PassOptionsToPackage{T1}{fontenc}
\usepackage{fontenc}
\usepackage{textcomp}
\usepackage{tabularx} % better tables
\setlength{\extrarowheight}{3pt}
\newcommand{\tableheadline}[1]{\multicolumn{1}{l}{\spacedlowsmallcaps{#1}}}
\newcommand{\myfloatalign}{\centering}
\usepackage{subfig}
\usepackage{booktabs}
\usepackage{xltabular}
\usepackage{array}
\usepackage{float}
\usepackage{multirow}
\usepackage{makecell}
\usepackage{caption}
\captionsetup{font=small}
答案1
- 您应该向我们展示带有表格的 MWE(最小工作示例),而不是代码片段。
- 表格格式对页面布局有很大的影响,特别是在表格看起来很大的情况下。
- 一种方法是考虑@Mico 注释并使用
tabularray
设计表的包、enumitem
单元格列表的包、raged2e
单元格文本格式化的包,方法是:
\documentclass[11pt]{book} % which document class you use?
\usepackage[margin=25mm]{geometry} % determine your document page layout
\usepackage{ragged2e}
\usepackage{tabularray}
\UseTblrLibrary{booktabs, siunitx, varwidth}
\usepackage{enumitem}
\AtBeginEnvironment{table}%
{\setlist[itemize]{nosep,
leftmargin=*}
}
\usepackage[skip=1ex]{caption}
\begin{document}
\begin{table}[!htb]
\caption[Fabrication techniques of sensing materials and their attributes]{Common sensing materials fabrication techniques with their general benefits and limitations.}
\label{table1-1}
\footnotesize
\begin{tblr}{colspec = {@{} Q[l, wd=7em] X[cmd=\RaggedRight] X[l] X[l] @{}},
stretch = -1,
rowsep = 3pt,
measure = vbox,
}
\toprule
Method & Description
& Benefits
& Limitations \\
\midrule
\SetCell[c=4]{c, font=\bfseries} Wet synthesis methods
& & & \\
Sol-gel & A chemical process that involves the transition of a solution to a gel for material preparation under mild condition.
& \begin{itemize}
\item Controlled composition
\item Good homogeneity
\item Low processing temperature
\item Versatility
\end{itemize}
& \begin{itemize}
\item Long processing time
\item Size reduction upon drying
\item Requires careful control of parameters
\item Often require post-synthesis treatments
\end{itemize}
\\
Hydrothermal / solvothermal
& Uses high temperature and pressure in aqueous (hydrothermal) or non-aqueous solutions (solvothermal).
& \begin{itemize}
\item High purity
\item Crystallinity control
\item low to moderate temperatures
\item Scalable
\end{itemize}
& \begin{itemize}
\item High pressure equipment
\item Limited range of particle size
\item Energy-intensive
\item Time-consuming
\end{itemize}
\\
Electrodeposition
& Electrochemical process for depositing a layer/coating of material by means of electric current.
& \begin{itemize}
\item Cost-effective
\item Good control over thickness
\item an coat complex shapes
\item Uniform deposition
\end{itemize}
& \begin{itemize}
\item Limited to conductive substrates
\item May require post-treatment
\item Thickness limitations
\item Environmental concerns
\end{itemize}
\\
Coprecipitation
& Precipitation of a solid from a solution containing multiple ions under controlled aqueous solutions and environments.
& \begin{itemize}
\item Simple process
\item Scalable
\item Low cost
\item Good control over composition
\end{itemize}
& \begin{itemize}
\item Requires washing and filtration
\item Agglomeration issues
\item Poor impurity control
\item Poor particle size control
\end{itemize}
\\
\SetCell[c=4]{c, font=\bfseries} Dry synthesis methods
& & & \\
Atomic layer deposition
& Thin film deposition technique based on the sequential use of a gas phase.
& \begin{itemize}
\item Excellent control over thickness
\item High uniformity
\item Good conformality
\item High-quality films
\end{itemize}
& \begin{itemize}
\item Slow deposition rate
\item Limited to certain materials
\item Expensive equipment
\item Temperature sensitivity
\end{itemize}
\\
Sputtering
& Physical vapor deposition technique for thin film creation using suitable energy of a plasma.
& \begin{itemize}
\item Versatile materials
\item Good adhesion
\item Scalable
\item Uniform thickness
\item Good control of film thickness
\end{itemize}
& \begin{itemize}
\item Costly equipment
\item May require high vacuum
\item Limited substrate size
\item Limit of precursor penetration depth
\end{itemize}
\\
Chemical vapor deposition
& Depositing solid material from a vapor by a chemical reaction under controlled atmospheres.
& \begin{itemize}
\item High purity and quality
\item Direct electrode assembly
\item Scalable
\item Wide material choice
\end{itemize}
& \begin{itemize}
\item High temperatures
\item Complex equipment
\item Safety concerns with gases
\item Uniformity challenges
\item Low production rate
\end{itemize}
\\
Spray pyrolysis
& Atomization of a precursor solution into droplets, followed by the evaporation of solvents and decomposition of the metal source in a heated reactor to generate particles.
& \begin{itemize}
\item Simple setup
\item Cost-effective
\item Versatile materials
\item Large area deposition
\end{itemize}
& \begin{itemize}
\item Poor particle size control
\item Requires heat/high-temperature management
\item May produce rough surfaces
\item Limited film thickness
\end{itemize}
\\
Flame spray pyrolysis
& Atomization of a precursor solution into droplets, followed by the combustion of solvents and decomposition of a precursor(s) to create nuclei then form nanoparticles.
& \begin{itemize}
\item High production rate
\item Good control of particle composition
\item Scalable
\item Versatile
\end{itemize}
& \begin{itemize}
\item High temperatures
\item Health \& safety concerns
\item Equipment cost
\item Particle agglomeration
\end{itemize}
\\
\bottomrule
\end{tblr}
\end{table}
\end{document}
如果您的页面边距较宽,您可以考虑在landscape
页面上写入包或使用可以拆分为两个或更多页面的长表。当您将代码片段扩展到 MWE 时,将对此进行更多了解。
以上解决方案适用于第一个代码片段。对于其他代码片段,您可以按照类似的方式自己解决(每个问题一个问题)。
编辑:
- 感谢您提供文档序言的代码片段
- 不幸的是它不起作用(参见@Mico 评论}
- 除此之外,它(与人们通常撰写序言的方式相比)相当奇怪(不必要的复杂)。例如
\PassOptionsToPackage{T1}{fontenc}
\usepackage{fontenc}
你可以简单地写
\usepackage[t1]{fontenc}
- 由于现在定义的页面布局,您的第一个表格无法放在一页上。可能的解决方案是
longtblr
使用tabularray
包 - 在下面的序言示例中,我只考虑文档类和包
[T1]{fontenc},
textcompand
mchem` longtblr
第二个表的MWE和添加的代码是:
\documentclass[ twoside,openright,titlepage,numbers=noenddot,%1headlines,
headinclude,footinclude,cleardoublepage=empty,abstract=on,
BCOR=5mm,paper=a4,fontsize=11pt
]{scrreprt}
%---------------- show page layout. don't use in a real document!
\usepackage{showframe}
\renewcommand\ShowFrameLinethickness{0.15pt}
\renewcommand*\ShowFrameColor{\color{red}}
%---------------------------------------------------------------%
\usepackage{lipsum}% For dummy text. Don't use in a real document
\usepackage{fontenc}
\usepackage{textcomp}
\usepackage[version=4]{mhchem}
% new packages neede for writing of the first table
\usepackage{ragged2e}
\usepackage{tabularray}
\UseTblrLibrary{booktabs, % load this package too
siunitx, % load this package too
varwidth}
\SetTblrStyle{caption}{font=\footnotesize}
\SetTblrStyle{caption-tag}{font=\bfseries}
\SetTblrStyle{contfoot}{font=\footnotesize\itshape}
\usepackage{enumitem}
\AtBeginEnvironment{longtblr}%
{\setlist[itemize]{nosep,
leftmargin=*}
}
\usepackage[skip=1ex]{caption}
\begin{document}
\begin{longtblr}[
entry = {[Fabrication techniques of sensing materials and their attributes},
caption = {Common sensing materials fabrication techniques with their general benefits and limitations.},
label = {table1-1}
]{cells = {font=\footnotesize},
colspec = {@{} Q[l, wd=7em] X[cmd=\RaggedRight] X[l] X[l] @{}},
stretch = -1,
rowsep = 3pt,
measure = vbox,
rowhead = 1
}
% table body is the same as in the first solution of your first table
\end{longtblr}
\lipsum[1]
%% Table 2 (added)
\begin{table}[!htb]
\footnotesize
\setlength\colwidthA{\widthof{functionalized \ce{ZnO}}} % <--- added
\setlength\colwidthB{\widthof{UV activated}} % <--- added
\begin{talltblr}[
entry = {Recent studies on room temperature VOC sensors.},
caption = {Comparison of recent studies of room temperature VOC sensors.},
label = {table2-1},
note{} = {\begin{enumerate*}[label=\textbf{\alph*:}, itemjoin={{;\quad }}, itemjoin*={{,\quad and\quad }}]
\item $I_{\mathrm{ethanol}}/I_{\mathrm{air}} \cdot 100$
\item $1-I_{\mathrm{ethanol}}/I_{\mathrm{air}} \cdot 100$
\item $I_{\mathrm{ethanol}}/I_{\mathrm{air}}$
\item $1-I_{\mathrm{air}}/I_{\mathrm{ethanol}} \cdot 100$
\item Therm.: Thermal.
\end{enumerate*}
}
]{cells = {font=\linespread{0.84}\selectfont},
colsep = 2pt,
colspec = {@{} Q[l, m, wd=\colwidthA]
c
Q[c, wd=\colwidthB]
*{4}{X[c]}
Q[l]
@{}},
}
\toprule
Material
& {Temp.\\(\unit{\celsius})}
& External Catalyst
& EtOH concentration (ppm)
& Responsivity ($I_{\mathrm{EtOH}}/\allowbreak I_{\mathrm{air}}{-}1$) (sec)
& Limit of Detection
& Response\slash Recovery times
& Ref. \\
\midrule
Thick porous \ce{ZnO} fractals
& RT
& Solar light
& 0.05, 1
& 2.22, 10.41
& 0.01
& 448/505, 300/360
& {This\\ work} \\
\ce{ZnO-NiO} nanoheterjunctions
& RT
& Solar light
& 0.1
& 0.77
& 0.01
& N/A
& [9b] \\
\ce{ZnO} nanorods
& RT
& UV light
& 200
& 4.24\TblrNote{a}
& N/A
& 52/192
& [18] \\
\ce{Cr2O3} functionalized \ce{ZnO}
& RT
& UV light
& 200
& 10.95\TblrNote{a}
& N/A
& 26/110
& [18] \\
\ce{$\alpha$-Fe2O3}/\ce{ZnO} nanowires
& RT
& N/A
& 100
& 9.1\%
& 100
& N/A
& [30a] \\
Au-modified \ce{ZnO} nanowire
& RT
& N/A
& 20
& ~10\TblrNote{b}
& N/A
& $-$/5
& [30b] \\
\ce{ZnO} nano disks
& RT
& Therm.\TblrNote{e} and UV activated
& 100
& 0.17
& 20
& 11/15
& [39] \\
Au-\ce{ZnO} nanofibers
& RT
& UV
& 100
& 1.18\TblrNote{c}
& N/A
& N/A
& [40] \\
\ce{ZnO} nanotubes
& RT
& N/A
& 10
& 30.91\TblrNote{d}
& N/A
& 263/80
& [41] \\
\bottomrule
\end{talltblr}
\end{table}
\end{document}
答案2
以下是针对所有四个表格的一组解决方案。请注意,它们没有使用大锤adjustbox
。相反,它们采用tabularx
(对于单页表)和xltabular
(对于多页表)环境,并为所有列启用换行。
总之,排版这四个表格至少需要六页;表 4 本身就需要三页。
\documentclass{article}
\usepackage[letterpaper,margin=1in]{geometry} % set page parameters appropriately
\usepackage{adjustbox,makecell,mhchem}
% new
\usepackage[T1]{fontenc}
\usepackage[english]{babel}
\usepackage{xltabular,ragged2e,booktabs,calc,amsmath}
\newcolumntype{L}[1]{%
>{\RaggedRight\hspace{0pt}\hsize=#1\hsize\linewidth=\hsize}X}
\newcolumntype{C}{%
>{\Centering\hspace{0pt}}X}
\newcolumntype{P}[1]{>{\RaggedRight\hspace{0pt}}p{#1}}
\usepackage{enumitem}
\newlist{myenum}{enumerate}{1}
\setlist[myenum,1]{label={-},nosep,left=0pt,
before={\begin{minipage}[t]{\hsize}},
after={\end{minipage}}}
\usepackage{siunitx} % for \qty, \unit, and \celsius macros
\usepackage[para,flushleft]{threeparttable}
\renewcommand{\TPTtagStyle}{\textit}
\usepackage{newpxtext,newpxmath} % optional (Palatino clone)
% provide a list of hypenation exceptions (mainly for chemical terms)
\hyphenation{aceto-nitrile acetyl-acetonate array arrays
benzo-nitrile
dimethyl-form-amide
ethyl-hexa-noate eth-oxide europ-ium
hexa-hydrate hexa-methyl hexa-methyl-disiloxane
iso-prop-oxide
penta-hydrate photo-activation poly-vinyl poly-vinyl-pyro-olidone
tetra-iso-prop-oxide tri-butyl tri-hydrate}
\begin{document}
\setcellgapes{2pt}\makegapedcells
\setlength{\LTcapwidth}{\textwidth}
%% Table 1
\begin{xltabular}{\textwidth}{@{} L{0.55} *{3}{L{1.15}} @{}}
\caption[Fabrication techniques of sensing materials and their attributes]{Common sensing materials fabrication techniques with their general benefits and limitations.}
\label{table1-1} \\
\toprule
Method & Description & Benefits & Limitations \\
\midrule
\endfirsthead
\multicolumn{4}{@{}l@{}}{Table \thetable, cont'd}\\
\toprule
Method & Description & Benefits & Limitations \\
\midrule
\endhead
\midrule
\multicolumn{4}{r@{}}{\itshape continued on next page}
\endfoot
\bottomrule
\endlastfoot
\multicolumn{4}{@{}l}{\textbf{Wet synthesis methods}}\\
Sol-gel
& A chemical process that involves the transition of a solution to a gel for material preparation under mild condition.
&
\begin{myenum}
\item Controlled composition
\item Good homogeneity
\item Low processing temperature
\item Versatility
\end{myenum}
&
\begin{myenum}
\item Long processing time
\item Size reduction upon drying
\item Requires careful control of parameters
item Often require post-synthesis treatments
\end{myenum}\\
Hydrothermal\slash solvo-thermal
& Uses high temperature and pressure in aqueous (hydrothermal) or non-aqueous solutions (solvothermal).
&
\begin{myenum}
\item High purity
\item Crystallinity control
\item low to moderate temperatures
\item Scalable
\end{myenum}
&
\begin{myenum}
\item High pressure equipment
\item Limited range of particle size
\item Energy-intensive
\item Time-consuming
\end{myenum}\\
Electro-deposition
& Electrochemical process for depositing a layer\slash coating of material by means of electric current.
&
\begin{myenum}
\item Cost-effective
\item Good control over thickness
\item Can coat complex shapes
\item Uniform deposition
\end{myenum}
&
\begin{myenum}
\item Limited to conductive substrates
\item May require post-treatment
\item Thickness limitations
\item Environmental concerns
\end{myenum}\\
Coprecipi-tation
& Precipitation of a solid from a solution containing multiple ions under controlled aqueous solutions and environments.
&
\begin{myenum}
\item Simple process
\item Scalable
\item Low cost
\item Good control over composition
\end{myenum}
&
\begin{myenum}
\item Requires washing and filtration
\item Agglomeration issues
\item Poor impurity control
\item Poor particle size control
\end{myenum}\\
\addlinespace
\multicolumn{4}{@{}l}{\textbf{Dry synthesis methods}}\\
Atomic layer deposition
& Thin film deposition technique based on the sequential use of a gas phase.
&
\begin{myenum}
\item Excellent control over thickness
\item High uniformity
\item Good conformality
\item High-quality films
\end{myenum}
&
\begin{myenum}
\item Slow deposition rate
\item Limited to certain materials
\item Expensive equipment
\item Temperature sensitivity
\end{myenum}\\
Sputtering
& Physical vapor deposition technique for thin film creation using suitable energy of a plasma.
&
\begin{myenum}
\item Versatile materials
\item Good adhesion
\item Scalable
\item Uniform thickness
\item Good control of film thickness
\end{myenum}
&
\begin{myenum}
\item Costly equipment
\item May require high vacuum
\item Limited substrate size
\item Limit of precursor penetration depth
\end{myenum}\\
Chemical vapor deposition
& Depositing solid material from a vapor by a chemical reaction under controlled atmospheres.
&
\begin{myenum}
\item High purity and quality
\item Direct electrode assembly
\item Scalable
\item Wide material choice
\end{myenum}
&
\begin{myenum}
\item High temperatures
\item Complex equipment
\item Safety concerns with gases
\item Uniformity challenges
\item Low production rate
\end{myenum}\\
Spray pyrolysis
& Atomization of a precursor solution into droplets, followed by the evaporation of solvents and decomposition of the metal source in a heated reactor to generate particles.
&
\begin{myenum}
\item Simple setup
\item Cost-effective
\item Versatile materials
\item Large area deposition
\end{myenum}
&
\begin{myenum}
\item Poor particle size control
\item Requires heat/high-temperature management
\item May produce rough surfaces
\item Limited film thickness
\end{myenum}\\
Flame spray pyrolysis
& Atomization of a precursor solution into droplets, followed by the combustion of solvents and decomposition of a precursor(s) to create nuclei then form nanoparticles.
&
\begin{myenum}
\item High production rate
\item Good control of particle composition
\item Scalable
\item Versatile
\end{myenum}
&
\begin{myenum}
\item High temperatures
\item Health \& safety concerns
\item Equipment cost
\item Particle agglomeration
\end{myenum}\\
\end{xltabular}
%%\end{adjustbox}
%% Table 2
\begin{table}[!htb]
\setlength{\tabcolsep}{3pt}
\begin{threeparttable}
\caption[Recent studies on room temperature VOC sensors.]{Comparison of recent studies of room temperature VOC sensors.}
\label{table2-1}
\begin{tabularx}{\textwidth}{@{}
P{\widthof{Thick porous \ce{ZnO} fractals}}
c
CCCCC
P{\widthof{work}} @{}}
\toprule
Material & \makecell[t]{Temp.\\(\unit{\celsius})} & External Catalyst & EtOH concentration (ppm) & Responsivity ($I_{\mathrm{EtOH}}/\allowbreak I_{\mathrm{air}}{-}1$) (sec) & Limit of Detection & Response\slash Recovery times & Ref. \\
\midrule
Thick porous \ce{ZnO} fractals & RT & Solar light & 0.05, 1 & 2.22, 10.41 & 0.01 & 448/505, 300/360 & This work \\
\ce{ZnO-NiO} nanoheterjunctions & RT & Solar light & 0.1 & 0.77 & 0.01 & N/A & [9b] \\
\ce{ZnO} nanorods & RT & UV light & 200 & 4.24\tnote{a} & N/A & 52/192 & [18] \\
\ce{Cr2O3} functionalized \ce{ZnO} & RT & UV light & 200 & 10.95\tnote{a} & N/A & 26/110 & [18] \\
\ce{$\alpha$-Fe2O3}/\ce{ZnO} nanowires & RT & N/A & 100 & 9.1\% & 100 & N/A & [30a] \\
Au-modified \ce{ZnO} nanowire & RT & N/A & 20 & ~10\tnote{b} & N/A & $-$/5 & [30b] \\
\ce{ZnO} nano disks & RT & Thermally and UV activated & 100 & 0.17 & 20 & 11/15 & [39] \\
Au-\ce{ZnO} nanofibers & RT & UV & 100 & 1.18\tnote{c} & N/A & N/A & [40] \\
\ce{ZnO} nanotubes & RT & N/A & 10 & 30.91\tnote{d} & N/A & 263/80 & [41] \\
\bottomrule
\end{tabularx}
\smallskip\footnotesize
\begin{tablenotes}
\item[a] $I_{\mathrm{ethanol}}/I_{\mathrm{air}} \cdot 100$
\item[b] $1-I_{\mathrm{ethanol}}/I_{\mathrm{air}} \cdot 100$
\item[c] $I_{\mathrm{ethanol}}/I_{\mathrm{air}}$
\item[d] $1-I_{\mathrm{air}}/I_{\mathrm{ethanol}} \cdot 100$
\end{tablenotes}
\end{threeparttable}
\end{table}
%% Table 3
\begin{table}[!htb]
\setlength{\tabcolsep}{3pt}
\begin{threeparttable}
\caption[Recent ethanol sensors with oxygen defects.]{Comparison of recently developed ethanol sensors with oxygen defects.}
\label{table2-2}
\begin{tabularx}{\textwidth}{@{}
P{\widthof{Thick Porous \ce{ZnO}}}
c
CCCCC
P{\widthof{work}}
@{}}
\toprule
Material & \makecell[t]{Sensing\\Temp.\\(\unit{\celsius})} & Oxygen Vacancy Introduction & EtOH Concentration (ppm) & Responsivity ($I_{\mathrm{EtOH}}/\allowbreak I_{\mathrm{air}}{-}1$) & Limit of Detection (ppm) & Response\slash Recovery Times (sec) & Ref. \\
\midrule
Thick porous \ce{ZnO} fractals & RT & DUV Photoactivation at \qty{200}{\celsius} & 0.05, 1 & 2.22, 10.41 & 0.01 & 448/505, 300/360 & This work \\
Thick porous \ce{ZnO} fractals & 150 & DUV Photoactivation at \qty{200}{\celsius} & 0.05, 1 & 0.97, 15.9 & 0.005 & 371/486, 260/312 & This work \\
\ce{ZnO} nanorod arrays & 400 & \ce{H2O2} thermal treatment at \qty{400}{\celsius} & 3 & ~70\tnote{a} & 1 & N/A & [35a] \\
Rutile \ce{SnO2} nanostructures & 190 & Reduction by \ce{NaBH4} & 20 & 37.2\tnote{a} & N/A & 42/17 & [43] \\
\ce{SnO2} nano-columns & RT & Reducing environment (Argon) & 400 & 1.27 & N/A & N/A & [42] \\
\ce{In2O3} octahedral particles & 200 & Phase transformation process from \ce{In(OH)3} at \qty{300}{\celsius} & 1000 & 610\tnote{a} & N/A & 1-2/15-20 & [15] \\
\ce{ZnO} nanosheets & 330 & Preferential [0001] growth direction at \qty{500}{\celsius} & 50 & 80\tnote{a} & N/A & N/A & [44] \\
Co-doped \ce{ZnO} microspheres & 220 & Co-doping at \qty{400}{\celsius} & 5 & 3.3\tnote{a} & N/A & N/A & [45] \\
Ce-doped \ce{ZnO} nanostructures & 300 & Ce-doping at \qty{450}{\celsius} & 100 & 72.6\tnote{a} & N/A & 9/3 & [46] \\
\ce{ZnO}/\ce{SnO2} composite hollow spheres & 225 & Hydrothermal process, calcination at \qty{400}{\celsius} & 30 & 34.8\tnote{a} & 0.5 & 1/-- & [47] \\
\bottomrule
\end{tabularx}
\smallskip\footnotesize
\begin{tablenotes}
\item[a] $I_{\mathrm{ethanol}}/I_{\mathrm{air}}$
\end{tablenotes}
\end{threeparttable}
\end{table}
\clearpage
%% Table 4
\begin{xltabular}{\textwidth}{@{}
L{0.9} % 0.9+1.31+3*0.93 = 5 = # of X-type columns
%% no linebreak allowed in '\ce{(NH4)6H2OW12.xH2O}'
L{1.31}
*{3}{L{0.93}}
P{\widthof{work}} @{}}
\caption{Summary of materials, precursors, solvents, and morphologies for various sensing applications.} \label{table:materials}\\
\toprule
Material & Precursor & Solvent & Nanostructure Morphology & Sensing Application & Ref. \\
\midrule
\endfirsthead
Table \thetable, cont'd\\
\toprule
Material & Precursor & Solvent & Nanostructure Morphology & Sensing Application & Ref. \\
\midrule
\endhead
\midrule
\multicolumn{6}{r@{}}{\itshape continued on next page}
\endfoot
\bottomrule
\endlastfoot
La-doped \ce{WO3} & \ce{La(NO3)3.6H2O} & ethanol & nano particles & gas sensing & \cite{Zhang_2022} \\
\ce{WO3} & \ce{(NH4)6H2OW12.xH2O} & ethanol & nano particles (crystals) & gas sensing & \cite{Wu_2022} \\
\ce{Zn2SnO4} & ZTO & ethanol & nano particles & photo detection & \cite{Karthick_2023} \\
ZnO & zinc naphthenate & m-xylene & nano particles & photo detection & \cite{Nasiri2015} \\
\ce{SnO2} & tin ethylhexanoate & xylene & nano particles & gas sensing & \cite{Keskinen_2009} \\
\ce{SnO2} & ethylhexanoate & ethanol & nano particles & gas sensing & \cite{Sahm_2004} \\
Pt-loaded \ce{WO3} & tungsten ethoxide & ethanol & nano particles & gas sensing & \cite{Samerjai2011} \\
Nb-ZnO & zinc naphthenate & toluene\slash methanol (70/30) vol.\% & & gas sensing & \cite{Kruefu_2011} \\
Nb-doped \ce{TiO2} & titanium isopropoxide & xylene\slash acetonitrile & nano powders & gas sensing & \cite{Phanichphant_2011} \\
\ce{TiO2} & titanium tetra isopropoxide & Xylene\slash acetonitrile & nano particles and films & gas sensing & \cite{Teleki_2006} \\
\ce{WO3} & ammonium tungsten hydrate & glycol\slash ethanol & nano particles & bio sensing & \cite{Wang_2008} \\
\ce{SnO2} & tin ethylhexanoate & xylene & nano powder & gas sensing & \cite{Liewhiran_2012} \\
Ru-\ce{SnO2} & tin ethylhexanoate & xylene & Nano powders\slash thick films & gas sensing & \cite{Liewhiran_2009} \\
Pt/ZnO & zinc naphthenate & xylene & Nano powder\slash thick films & gas sensing & \cite{Tamaekong2009} \\
Pt-loaded ZnO & zinc naphthenate & xylene & Nano particles\slash thick films & gas sensing & \cite{Tamaekong_2011} \\
Pd-ZnO & zinc naphthenate & toluene\slash acetonitrile (80/20) vol.\% & nano particles\slash thick films & gas sensing & \cite{Liewhiran_2008} \\
Nb- and Cu-doped \ce{TiO2} & titanium tetra isopropoxide & xylene & nano particles & gas sensing & \cite{TELEKI_2008} \\
\ce{Bi2WO6} & bismuth nitrate pentahydrate, tungsten ethoxide & ethanol, acetic acid & nano particles & gas sensing & \cite{Punginsang_2019} \\
\ce{PdO_x}-doped \ce{In2O3} & indium nitrate hydrate, palladium acetylacetonate & ethanol & nano particles & gas sensing & \cite{Inyawilert_2019} \\
Pt-doped \ce{In2O3} & indium nitrate & ethanol & nano particles & gas sensing & \cite{Inyawilert_2016} \\
Pd-doped \ce{SnO2} & tin ethylhexanoate & xylene\slash acetonitrile (80/20) vol.\% & nano particles & gas sensing & \cite{Liewhiran_2013} \\
rGO-doped \ce{ZnO} & Au and Pd & de-ionized water & nano fibers & gas sensing & \cite{Abideen2018} \\
ZnO & zinc naphthenate & xylene & nano particles & photo detection & \cite{Nasiri2016} \\
\ce{SnO2} & tin chloride & ammonia solution & nano powder & gas sensing & \cite{Xu1991} \\
Pd-ZnO & zinc nephthanate and palladium acetylacetonate & toluene and acetonitrile & nano particles & gas sensing & \cite{Liewhiran2007} \\
\ce{SnO2} and \ce{ZnO} & tin oxide & nitric acid & nano powder & gas sensing & \cite{Yamazoe1983} \\
\ce{WO3} & ammonium metatungstate hydrate, polyvinylpyroolidone & dimethylformamide & nano fibers & gas sensing & \cite{Yang2021a} \\
\ce{TiO2} & titanium isopropoxide & ethanolamine & nano wires & gas sensing & \cite{Shooshtari2021} \\
Zn-doped \ce{Fe2O3} & zinc nitrate hexahydrate, iron nitrate nanohydrate & de-ionized water & nano particles & gas sensing & \cite{Kim2011} \\
graphene loaded \ce{SnO2} & graphene, tin chloride dihydrate, polyvinyl acetate & ethanol, dimethylformamide & nano fibers & gas sensing & \cite{Abideen2017} \\
\ce{Au}-\ce{ZnO} & \ce{HAuCl4} & Aqueous ammonia solution & nano wires & gas sensing & \cite{Wang2013} \\
\ce{SnO2} & tin chloride dihydrate & ethanol, dimethylformamide & nano fibers & gas sensing & \cite{Kim2016} \\
Ti-doped ZnO & zinc ethylhexanoate, titanium tetraisopropoxide & xylene & nano particles & bio sensing & \cite{Guntner2016} \\
Pt/\ce{SnO2} & tin ethylhexanoic acid, platinum acetylacetonate & toluene, & nano particles & gas sensing & \cite{Maedler2006} \\
NiO-ZnO & zinc nephthanate & xylene & nano particles & gas sensing & \cite{Chen2018} \\
Ag-doped \ce{TiO2} & titanium isopropoxide, silver nitrate & ethanol & nano particles & photo detection & \cite{Yildirim2021} \\
Au & \ce{HAuCl4} & ethanol & nano particles & photo detection & \cite{Thimsen2011} \\
\ce{MoO3} & Mo Solid rod & de-ionized water & nano particles & gas sensing & \cite{Shafieyan2019} \\
Au & \ce{HAuCl4} & ethanol & nano particles & photo detection & \cite{Fusco2019} \\
Au-\ce{TiO2} & \ce{HAuCl4}, titanium isopropoxide & ethanol, xylene & nano particles & photo detection & \cite{Fusco2018a} \\
AgO-\ce{TiO2} & titanium isopropoxide, silver acetate & acetonitrile, ethyl hexanoic acid & nanohybrids & bio sensing & \cite{Guntner2023} \\
graphene Cu & copper naphthenate & xylene & nano particles\slash films & bio sensing & \cite{DiBernardo2020} \\
Au & gold chloride trihydrate & ethanol & nano particles & bio sensing & \cite{Dastidar2022} \\
Ag-\ce{SiO2} & silver nitrate, hexamethyldisiloxane & ethanol & nano particles & bio sensing & \cite{Sotiriou2013} \\
CuO & copper nitrate & -- & nano particles & bio sensing & \cite{Yang2021} \\
Au & \ce{HAuCl4} & ethanol & nano islands & bio sensing & \cite{Mondal2023} \\
\ce{CaP}:\ce{Eu} & calcium acetate hydrate, europium nitrate, tributyl phosphate & propionic acid & nano particles & bio sensing & \cite{Merkl2021} \\
\ce{SiO2}-coated \ce{Y2O3}:\ce{Tb^{3+}} & yttrium nitrate, hexamethyl disiloxane & ethyl hexanoic acid, ethanol & nano particles & bio sensing and photo detection & \cite{Sotiriou2012} \\
enzyme minetic luminescent & cerium 2\nobreakdash-\hspace{0pt}ethylhexanoate, Eu-nitrate & methanol & nano particles & bio sensing & \cite{Pratsinis2017} \\
CuO-\ce{Cu2O} & copper nitrate trihydrate & ethanol & nano particles & photo detection & \cite{Zhu2017} \\
nano silver \ce{SiO2} coating & Ag-benzoate, hexamethyl disiloxane & ethylhexanoic acid, benzonitrile & nano particles & bio sensing & \cite{Sotiriou2010} \\
ZnO & zinc naphthenate & xylene & nano particles & photo detection & \cite{Fang2017} \\
ZnO, \ce{SiO2}, \ce{TiO2} & zinc naphthenate, hexamethyldisiloxane, titanium isopropoxide & xylene & nano particles & photo detection & \cite{Nasiri2016a} \\
ZnO & zinc naphthenate & xylene & nano particle film & photo detection & \cite{Nasiri2017} \\
\end{xltabular}
\end{document}