我用 LaTeX 制作了以下表格:
\begin{table}[hbt]
\begin{center}
\begin{tabular}{|l|l|l|l|}
\hline & \multicolumn{3}{c|}{Examples}\\
\cline{2-4}
& description & $M$ & \textbf{u}\\
\hline translation & through vector $\begin{pmatrix}6\\7\end{pmatrix}$ & $\begin{pmatrix}
1 & 0 \\ 0 & 1
\end{pmatrix}$ & $\begin{pmatrix}6\\7\end{pmatrix}$\\
\hline reflection & in line $x=2$ & $\begin{pmatrix}
-1 & 0 \\ 0 & 1
\end{pmatrix}$ & $\begin{pmatrix}4\\0\end{pmatrix}$\\
\hline rotation & about \textbf{0} through $\pi$ radians & $\begin{pmatrix}
-1 & 0 \\ 0 & -1
\end{pmatrix}$ & $\begin{pmatrix}0\\0\end{pmatrix}$\\
\hline glide reflection & in line $y=x$, then through $\begin{pmatrix}1\\1\end{pmatrix}$ & $\begin{pmatrix}
0 & 1 \\ 1 & 0
\end{pmatrix}$ & $\begin{pmatrix}1\\1\end{pmatrix}$\\
\hline
\end{tabular}
\caption{Examples of Euclidean Transformations} \label{tab1}
\end{center}
\end{table}
如何删除左上角空单元格的两条外部线条?我只想要其他部分周围的线条。
而且它看起来有点拥挤,有什么办法可以让它看起来更美观吗?
答案1
稍微修改一下 Mico 的回答:
setspace
添加了用于在最后两列单元格内容周围垂直空间的包amsmath
改为mathtools
,其pmatrix*
可以是pmatrix
列右对齐
\documentclass{article}
\usepackage{mathtools, array, cellspace}% changed package, new package
\begin{document}
\begin{table}[hbt]
\setlength\cellspacetoplimit{3pt} % add vertical space above cell content
\setlength\cellspacebottomlimit{3pt} % add vertical space below cell content
\renewcommand\arraystretch{1.3} % for a slightly more open look
\setlength\arraycolsep{3pt} % for smaller distances between pmatrix columns
\centering
\begin{tabular}{|l|l|*{2}{>{$}Sc<{$}|}} % changed column types for last two columns
\cline{2-4}
\multicolumn{1}{l|}{} & \multicolumn{3}{c|}{Examples}\\
\cline{2-4}
\multicolumn{1}{l|}{} & Description & M & \mathbf{u} \\
\hline
Translation & through vector $\begin{pmatrix}6\\7\end{pmatrix}$
& \displaystyle\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
& \begin{pmatrix}6\\7\end{pmatrix} \\
\hline
Reflection & in line $x=2$
& \begin{pmatrix*}[r] -1 & 0 \\ 0 & 1 \end{pmatrix*}
& \begin{pmatrix}4\\0\end{pmatrix} \\
\hline
Rotation & about $\mathbf{0}$ through $\pi$ radians
& \begin{pmatrix*}[r] -1 & 0 \\ 0 & -1 \end{pmatrix*}% right align columns in pmatrix
& \begin{pmatrix}0\\0\end{pmatrix} \\
\hline
Glide reflection & in line $y=x$, then through $\begin{pmatrix}1\\1\end{pmatrix}$
& \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
& \begin{pmatrix}1\\1\end{pmatrix} \\
\hline
\end{tabular}
\caption{Examples of Euclidean Transformations}
\label{tab1}
\end{table}
\end{document}
答案2
您需要更换标题行
\hline & \multicolumn{3}{c|}{Examples}\\
\cline{2-4}
& description & $M$ & \textbf{u}\\
和
\cline{2-4}
\multicolumn{1}{l|}{} & \multicolumn{3}{c|}{Examples}\\
\cline{2-4}
\multicolumn{1}{l|}{} & description & $M$ & $\mathbf{u}$\\
完整的 MWE:
\documentclass{article}
\usepackage{amsmath,array}
\begin{document}
\begin{table}[hbt]
\setlength\extrarowheight{2pt} % for a slightly more open look
\centering
\begin{tabular}{|l|l|c|c|}
\cline{2-4}
\multicolumn{1}{l|}{} & \multicolumn{3}{c|}{Examples}\\
\cline{2-4}
\multicolumn{1}{l|}{} & Description & $M$ & $\mathbf{u}$\\
\hline
Translation & through vector $\begin{pmatrix}6\\7\end{pmatrix}$
& $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
& $\begin{pmatrix}6\\7\end{pmatrix}$\\
\hline
Reflection & in line $x=2$
& $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$
& $\begin{pmatrix}4\\0\end{pmatrix}$\\
\hline
Rotation & about $\mathbf{0}$ through $\pi$ radians
& $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$
& $\begin{pmatrix}0\\0\end{pmatrix}$\\
\hline
Glide reflection & in line $y=x$, then through $\begin{pmatrix}1\\1\end{pmatrix}$
& $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
& $\begin{pmatrix}1\\1\end{pmatrix}$\\
\hline
\end{tabular}
\caption{Examples of Euclidean Transformations}
\label{tab1}
\end{table}
\end{document}
答案3
为了改善表格的整体外观,您可能还会对booktabs
包装感兴趣。在这种情况下不需要垂直规则。正如您所观察到的,由于包装增加了额外的垂直空间,表格现在不那么糟糕了。
\documentclass{article}
\usepackage{amsmath,booktabs}
\begin{document}
\begin{table}[hbt]
\centering
\begin{tabular}{*4{l}}
\toprule
& \multicolumn{3}{c}{Examples}\\
\cmidrule{2-4}
& description & $M$ & \textbf{u}\\
\midrule translation & through vector $\begin{pmatrix}6\\7\end{pmatrix}$ & $\begin{pmatrix}
1 & 0 \\ 0 & 1
\end{pmatrix}$ & $\begin{pmatrix}6\\7\end{pmatrix}$\\
\midrule reflection & in line $x=2$ & $\begin{pmatrix}
-1 & 0 \\ 0 & 1
\end{pmatrix}$ & $\begin{pmatrix}4\\0\end{pmatrix}$\\
\midrule rotation & about \textbf{0} through $\pi$ radians & $\begin{pmatrix}
-1 & 0 \\ 0 & -1
\end{pmatrix}$ & $\begin{pmatrix}0\\0\end{pmatrix}$\\
\midrule glide reflection & in line $y=x$, then through $\begin{pmatrix}1\\1\end{pmatrix}$ & $\begin{pmatrix}
0 & 1 \\ 1 & 0
\end{pmatrix}$ & $\begin{pmatrix}1\\1\end{pmatrix}$\\
\bottomrule
\end{tabular}
\caption{Examples of Euclidean Transformations}
\label{tab1}
\end{table}
\end{document}
可能更好的版本(通过删除内部的\midrule
s 并按照@Mico 的建议为行添加一个小的垂直高度\\[8pt]
):
\begin{tabular}{*4{l}}
\toprule
& \multicolumn{3}{c}{Examples}\\
\cmidrule{2-4}
& description & $M$ & $\mathbf{u}$\\
\midrule translation & through vector $\begin{pmatrix}6\\7\end{pmatrix}$ & $\begin{pmatrix}
1 & 0 \\ 0 & 1
\end{pmatrix}$ & $\begin{pmatrix}6\\7\end{pmatrix}$\\[8pt]
reflection & in line $x=2$ & $\begin{pmatrix}
-1 & 0 \\ 0 & 1
\end{pmatrix}$ & $\begin{pmatrix}4\\0\end{pmatrix}$\\[8pt]
rotation & about \textbf{0} through $\pi$ radians & $\begin{pmatrix}
-1 & 0 \\ 0 & -1
\end{pmatrix}$ & $\begin{pmatrix}0\\0\end{pmatrix}$\\[8pt]
glide reflection & in line $y=x$, then through $\begin{pmatrix}1\\1\end{pmatrix}$ & $\begin{pmatrix}
0 & 1 \\ 1 & 0
\end{pmatrix}$ & $\begin{pmatrix}1\\1\end{pmatrix}$\\
\bottomrule
\end{tabular}
答案4
环境{NiceTabular}
有nicematrix
一个计算“空角”的键corners
。因此,你只需要写:
\documentclass{article}
\usepackage{nicematrix}
\begin{document}
\begin{table}[hbt]
\centering
\begin{NiceTabular}{llcc}[cell-space-limits=5pt,hvlines,corners]
& \Block{1-3}{Examples}\\
& Description & $M$ & \textbf{u}\\
Translation & through vector $\begin{pmatrix}6\\7\end{pmatrix}$ & $\begin{pmatrix}
1 & 0 \\ 0 & 1
\end{pmatrix}$ & $\begin{pmatrix}6\\7\end{pmatrix}$\\
Reflection & in line $x=2$ & $\begin{pmatrix}
-1 & 0 \\ 0 & 1
\end{pmatrix}$ & $\begin{pmatrix}4\\0\end{pmatrix}$\\
Rotation & about \textbf{0} through $\pi$ radians & $\begin{pmatrix}
-1 & 0 \\ 0 & -1
\end{pmatrix}$ & $\begin{pmatrix}0\\0\end{pmatrix}$\\
Glide reflection & in line $y=x$, then through $\begin{pmatrix}1\\1\end{pmatrix}$ & $\begin{pmatrix}
0 & 1 \\ 1 & 0
\end{pmatrix}$ & $\begin{pmatrix}1\\1\end{pmatrix}$\\
\end{NiceTabular}
\caption{Examples of Euclidean Transformations} \label{tab1}
\end{table}
\end{document}
不过,我建议本着表格的精神booktabs
(参见其他答案)。