答案1
\documentclass{article}
\usepackage{amsmath}
\begin{document}
...is equally likely to be one of the $\binom{\binom{n}{2}}{m}$ graphs with $m$ edges, and for such a distribution $p=\frac{m}{n(n-1)}$.
...is equally likely to be one of the $\dbinom{\binom{n}{2}}{m}$ graphs with $m$ edges, and for such a distribution $p=\frac{m}{n(n-1)}$.
\end{document}
答案2
我建议您使用包提供的smallmatrix
和环境。我还将用内联样式的分数表达式替换表达式。psmallmatrix
mathtools
\frac
p
\documentclass{article}
\usepackage{mathtools} % for smallmatrix and psmallmatrix environments
\begin{document}
\dots is equally likely to be one of the
$\smash[b]{\Bigl( \!
\begin{smallmatrix}
\begin{psmallmatrix} n \\ 2 \end{psmallmatrix} \
m
\end{smallmatrix}\! \Bigr)}$
graphs with $m$ edges, and for such a distribution $p=m/(n(n-1))$.
\end{document}