我对 LaTex 中的表格定位存在问题。
这是该表的代码:
\begin{tabular}
{|m{2cm}|m{2cm}|m{1.5cm}|l|}
\hline Title&Methodology&Dataset&Accuracy\\ \hline A Supervised Machine Learning Approach to Detect Fake Online Reviews & Naive Bayes, Decision Tree, Random Forest, and Support Vector Machine & Amazon reviews &91.45\%\\
\hline Declarative Programming Approach for Fake Review Detection & Declarative Programming Approach & Hotel reviews & 94.87\% \\
\hline Detecting Fake Reviews through Sentiment Analysis Using Machine Learning Techniques & Sentiment Analysis with Naive Bayes and SVM & Hotel Reviews & 87\% \\
\hline Fake Review Detection Based on Multiple Feature Fusion and Rolling Collaborative Training & Naive Bayes, Decision Tree, Random Forest, and Support Vector Machine & Amazon reviews & 97.98\% \\
\hline Impact of Sentiment Analysis in Fake Online Review Detection & Naive Bayes, Random Forest, and Support Vector Machine & E-commerce website & 96.36\% \\
\hline The Effect of Fake Reviews on e-Commerce During and After the Covid-19 Pandemic: SKL-Based Fake Reviews Detection. & Machine learning algorithm based on the Scikit-Learn library & E-commerce platform & 95.22\% \\
\hline Using Boosting Approaches to Detect Spam Reviews & AdaBoost, Gradient Boosting, and XGBoost, using various features such as n-grams, part-of-speech tags & E-commerce websites & 95.4\% \\
\hline
\end{tabular}
文档的布局是 IEEE 会议论文。内容分为两列,我的表格位于中间的右列。由于我的表格有 8 列,所以它会在下一页全部移动到左列。我想拆分表格以便可以容纳它。
我曾尝试使用 float 和 h! 命令,但无济于事。
答案1
- 您没有提供MWE(最小工作示例),这是一个小但有用的文档,我们可以按原样对其进行测试。
- 因此,我们没有关于您的文档页面布局的任何信息。
- 在表格片段中您声明了六列但只使用了四列!
- 我建议
X
前三列使用列类型,S
最后一列使用列类型,并减少列间距。 - 使用
tblr
包tabularray
使表代码更短:
\documentclass{article}
%---------------- show page layout. don't use in a real document!
\usepackage{showframe}
\renewcommand\ShowFrameLinethickness{0.15pt}
\renewcommand*\ShowFrameColor{\color{red}}
%---------------------------------------------------------------%
\usepackage{lipsum}% For dummy text. Don't use in a real document
\usepackage{ragged2e}
\usepackage{tabularray}
\UseTblrLibrary{siunitx}
\usepackage{lipsum}
\begin{document}
\begin{table}[ht]
\begin{tblr}{hlines, vlines,
colspec = { *{3}{X[j, cmd=\RaggedRight\hskip0pt]} Q[c, m, si={table-format=3.2{\%}}]},
cell{2-Z}{4} = {appto=\%},
colsep = 3pt,
row{1} = {guard, c}
}
Title
& Methodology
& Dataset
& Accuracy \\
A Supervised Machine Learning Approach to Detect Fake Online Reviews
& Naive Bayes, Decision Tree, Random Forest, and Support Vector Machine
& Amazon reviews
& 91.45 \\
Declarative Programming Approach for Fake Review Detection
& Declarative Programming Approach
& Hotel reviews
& 94.87 \\
Detecting Fake Reviews through Sentiment Analysis Using Machine Learning Techniques
& Sentiment Analysis with Naive Bayes and SVM
& Hotel Reviews
& 87 \\
Fake Review Detection Based on Multiple Feature Fusion and Rolling Collaborative Training
& Naive Bayes, Decision Tree, Random Forest, and Support Vector Machine
& Amazon reviews
& 97.98 \\
Impact of Sentiment Analysis in Fake Online Review Detection
& Naive Bayes, Random Forest, and Support Vector Machine
& E-commerce website
& 96.36 \\
The Effect of Fake Reviews on e-Commerce During and After the Covid-19 Pandemic: SKL-Based Fake Reviews Detection.
& Machine learning algorithm based on the Scikit-Learn library
& E-commerce platform
& 95.22 \\
Using Boosting Approaches to Detect Spam Reviews
& AdaBoost, Gradient Boosting, and XGBoost, using various features such as n-grams, part-of-speech tags
& E-commerce websites
& 95.4 \\
\end{tblr}
\end{table}
\end{document}
(红线表示页面布局)