我想使用 TikZ/pgf 制作以下 3D 图形,它包括:
- 当 (x, y) != (0,0) 且 f(0,0)=0 时,函数 f(x, y) = xy/(x^2 + y^2) 的图;
- 平面 y = x 与表面的交线,即方程 y = x, z = 1/2 的直线,但省略了点 (0, 0, 1/2);
- 起源;以及
- 至少是 x、y 和 z 轴的正部分。
该图形是使用 Mathematica 创建的,并使用 (r,θ, φ) 球面坐标(其中角度以弧度而不是度数为单位)中的视点 (2.85216, 1.62152, 0.828166)。
我pgfplots
尝试使用下面的代码并生成之后显示的图形。
问题:我怎样才能修改pgfplots
代码,以便与 Mathematica 图形非常相似,以便它:
使用基本相同的视点(因此轴的方向也相同);
省略表面上的轮廓规则;
在 y = x, z = 1/2 线上的 z 轴处有断点;
使用更有说服力的原点;并且
避免 z 轴附近表面的“锯齿状”。
关于 5.,我确实尝试增加该samples
值,但这样做会导致TeX capacity exceeded
错误!
我的pgfplot
输出:
我的代码:
\documentclass{standalone}
\usepackage{pgfplots}
\pgfplotsset{compat=newest}
% Define a grayscale colormap
\pgfplotsset{
colormap={grayscale}{[1pt] rgb255(0pt)=(0,0,0); rgb255(1000pt)=(255,255,255)}
}
\begin{document}
\begin{tikzpicture}
\begin{axis}[
view={75.833}{35.3489},
axis lines=center,
xlabel={$x$}, ylabel={$y$}, zlabel={$z$},
ticks=none,
domain=-1:1, y domain=-1:1,
samples=50, % need to avoid "jaggies"
z buffer=sort,
clip=false,
xmin=-1, xmax=1, ymin=-1, ymax=1, zmin=-1, zmax=1.5,
colormap name=grayscale,
xlabel style={anchor=north west}, ylabel style={anchor=north west},
zlabel style={anchor=south},
]
% Surface plot
\addplot3[surf, shader=faceted interp, opacity=0.7]
{x != 0 || y != 0 ? (x*y)/(x^2 + y^2) : 0};
% Point at the origin
\addplot3[mark=*, mark size=1,mark options={color=black}] coordinates {(0, 0, 0)};
% Curve of intersection of plane and surface
\addplot3[samples=20, samples y=0, thick, color=black]
({x}, {x}, {1/2});
\end{axis}
\end{tikzpicture}
\end{document}
答案1
更新
我根据 @murray 的众多评论修改了代码。有两种表示表面的方法:要么使用极坐标作为定义域,要么使用法线坐标。前者理想地处理原点处的奇点,因为它尊重它。后者坚持函数的初始定义,但难以处理其在 (0, 0) 附近的行为。
对于后者,相对于初始答案的主要修改如下:
- 表面被分成两部分(y<0和y > 0分别)
- 为了更好地理解表面,添加了边框
- 轴是单独绘制的(作为 TikZ 段)。
各种图形元素的顺序很重要。
评论
下面是使用基于 10000x10000 网格的计算获得的图像matplotlib
。从后者的角度来看,表面永远不可能在原点周围平滑。
使用极坐标作为域的绘图新代码
\documentclass[11pt, margin=10pt]{standalone}
\usepackage{pgfplots}
\usetikzlibrary{math}
\pgfplotsset{compat=1.17}
\begin{document}
\pgfplotsset{
colormap={cmpgray}{rgb255=(221,221,221) rgb255=(54,54,54)}
}
\xdefinecolor{axisRGB}{RGB}{128, 30, 0} % {128, 128, 145}
\begin{tikzpicture}
\begin{axis}[
data cs=polar,
axis lines=none, % grid=major,
view={110}{22},
z buffer=sort,
clip=false]
% negative Ox axis
\draw[axisRGB, thin] (0, 0, 0) -- (-1.8, 0, 0);
\draw[axisRGB, thin, ->] (0, 0, .02) -- (0, 0, .8)
node[right, text=black, scale=.7] {$z$};
\addplot3[
surf,
shader=interp,
domain=0:360, domain y=.02:1.4,
samples=50, samples y=20,
opacity=0.95]
{.5*sin(2*x)};
% negative Oy axis
\draw[axisRGB, thin] (0, 0, 0) -- (0, -1.8, 0);
% negative Oz axis
\draw[axisRGB, thin] (0, 0, -.025) -- (0, 0, -.8);
% point at the origin
\fill[opacity=.7] (0, 0, 0) circle (1.2pt);
\draw[axisRGB, thin, ->] (0, .02, 0, 0) -- (0, 1.8, 0)
node[below, text=black, scale=.7] {$y$};
\draw[axisRGB, thin, ->] (.02, 0, 0) -- (1.8, 0, 0)
node[below, text=black, scale=.7] {$x$};
% Intersection curve of surface and plane z=1/2
\draw[thin] (-1, -1, 1/2) -- (1, 1, 1/2);
\end{axis}
\end{tikzpicture}
\end{document}
第二幅图的新代码
\documentclass[11pt, margin=10pt]{standalone}
\usepackage{pgfplots}
\pgfplotsset{compat=1.17}
\begin{document}
\pgfplotsset{
colormap={cmpgray}{rgb255=(221,221,221) rgb255=(54,54,54)}
}
\xdefinecolor{axisRGB}{RGB}{128, 128, 145}
\begin{tikzpicture}
\begin{axis}[
view={115}{19},
axis lines=none, % center,
xlabel={$x$}, ylabel={$y$}, zlabel={$z$},
ticks=none,
z buffer=sort,
clip=false,
xmin=-1.3, xmax=1.3,
ymin=-1.3, ymax=1.3,
zmin=-1, zmax=1.3,
xlabel style={anchor=north west, scale=.8},
ylabel style={anchor=north west, scale=.8},
zlabel style={anchor=south, scale=.8},
]
% Surface y<0
\addplot3[
surf,
domain=-1:1,
y domain=-1:-.005,
samples=55,
colormap name=cmpgray,
shader=interp, % flat, faceted interp,
opacity=0.75]
{x*y/(x^2 + y^2)};
% Surface y<0 's border
\addplot3[%
draw=black, ultra thin,
domain=-1:1,
samples y=0]
(x, -1, {-x/(x*x +1)});
\addplot3[%
draw=black, ultra thin,
domain=-1:1,
samples y=0]
(-1, x, {-x/(x*x +1)});
% negative Ox and Oy axes
\draw[axisRGB, thin] (0, 0, 0) -- (0, -1.4, 0);
\draw[axisRGB, thin] (0, 0, 0) -- (-1.4, 0, 0);
% Point at the origin
\fill (0, 0, 0) circle (1.2pt);
% positive Oz axis
\draw[axisRGB, thin, ->] (0, 0, .02) -- (0, 0, 1.3)
node[right, text=black, scale=.7] {$z$};
% Surface y>0
\addplot3[
surf,
domain=-1:1,
y domain=.005:1,
samples=55,
colormap name=cmpgray,
shader=interp, % flat, faceted interp,
opacity=0.75]
{x*y/(x*x + y*y)};
% positive Oy axis
\draw[axisRGB, thin, ->] (0, .02, 0, 0) -- (0, 1.4, 0)
node[below, text=black, scale=.7] {$y$};
% negative Oz axis
\draw[axisRGB, thin] (0, 0, -.025) -- (0, 0, -1.3);
% Intersection curve of surface and plane z=1/2
\draw[thin] (-1, -1, 1/2) -- (1, 1, 1/2);
% Surface y>0 's border
\addplot3[%
draw=black, very thin,
domain=-1:1,
samples y=0]
(x, 1, {x/(x*x +1)});
\addplot3[%
draw=black, very thin,
domain=-1:1,
samples y=0]
(1, x, {x/(x*x +1)});
% positive Ox axis
\draw[axisRGB, thin, ->] (.02, 0, 0) -- (1.5, 0, 0)
node[below, text=black, scale=.7] {$x$};
\end{axis}
\end{tikzpicture}
\end{document}
旧答案
像这样;我只改变了视角、坐标轴的长度和着色器。
代码
\documentclass[11pt, margin=10pt]{standalone}
\usepackage{pgfplots}
\usepgfplotslibrary{colorbrewer}
\pgfplotsset{compat=1.17}
\begin{document}
\begin{tikzpicture}
\begin{axis}[
view={115}{15},
axis lines=center,
xlabel={$x$}, ylabel={$y$}, zlabel={$z$},
ticks=none,
domain=-1:1, y domain=-1:1,
samples=50, % need to avoid "jaggies"
z buffer=sort,
clip=false,
xmin=-1.3, xmax=1.3,
ymin=-1.3, ymax=1.3,
zmin=-1, zmax=1.3,
xlabel style={anchor=north west, scale=.8},
ylabel style={anchor=north west, scale=.8},
zlabel style={anchor=south, scale=.8},
]
% Surface plot
\addplot3[
surf,
colormap/Blues, % cool,
% shader=faceted interp,
opacity=0.3]
{x != 0 || y != 0 ? (x*y)/(x^2 + y^2) : 0};
% Point at the origin
\addplot3[mark=*, mark size=1,mark options={color=black}]
coordinates {(0, 0, 0)};
% Curve of intersection of plane and surface
\addplot3[samples=20, samples y=0, thick, color=black]
({x}, {x}, {1/2});
\end{axis}
\end{tikzpicture}
\end{document}